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Abstract

Background:
Intercontinental migratory waterfowl are the primary vectors for dispersion of

H5N1 viruses and have been implicated in several zoonotic epidemics and
pandemics. Recent investigations have established that witha single mutation,
the virus gains the ability to transmit between humans. Consequently, there is a
heightened urgency to identify innovative approaches to proactively mitigate
emergent epidemics. Accordingly, a novel methodology combining
temporo-geospatial epidemiology and phylogeographic analysis of viral strains is
proposed to identify critical epicenters and epidemic pathways along with high
risk candidate regions for increased surveillance.

Results:
Epidemiological analysis was used to identify 91,245 candidate global infection

transmission pathways between 22 high risk waterfowl species.Dominant
infection pathways (25,625 and 54,500 in summering and wintering zones) were
identi�ed through annotation using phylogeographical data computedfrom the
phylogram of 2417 H5N1 HA isolates (from GISAID EpiFlu database).
Annotation of infection pathways in turn delineated 23 in
uential clades out of
130 clades in the phylogram.

Conclusions:
The phylogeographic analyses provides strong cross-validation of epidemic

pathways and identi�es the dominant pathways for use in other epidemiological
and prophylactic studies. The temporo-geospatial characteristics of infection
transmission provides corroborating, but novel evidence for rapid genesis of H5N1
lineages in S.E. Asia. The proposed method pinpoints several regions, particularly
in the southern hemisphere, as candidates for increased surveillance.
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Background
Humanity continues to face a multitude of global socioeconomic challenges due to
annual epidemics and punctuated pandemics of highly virulent zoonoses such as
avian in
uenza (H5N1, H7N9) and the 2009 swine 
u (H1N1) pandemic [1, 2]. The
2009 swine 
u (H1N1) pandemic virus involved segments from avian serotype [1].
Highly Pathogenic Avian In
uenza (HPAI) virus are routinely transmitted to hu-
mans in several parts of the world as reported by the World Health Organiza-
tion (WHO) [ 3] (see �gure in supplementary material), including a recent case in
Canada [4], with an alarming 60% mortality rate [ 5]. Moreover, the disease is of
global importance because low pathogenic forms of the viruses cause billions of
dollars of annual losses due to recurrent epidemics in poultry [5, 6].
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Ecology of Avian In
uenza: Need for analysis of migratory waterfowl
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Figure 1 Overview of global ecology
of Avian In
uenza Viral serotypes,
hosts, and vectors are shown.

The global ecology of avian in
uenza, is
summarized in Figure 1 along with vari-
ous polymorphic strains. It has been estab-
lished that migratory waterfowl, especially
anseriformes and charadrillformes, play a
central role in the global ecology [7, 8].
Moreover, migratory waterfowl have been
implicated as natural reservoirs, mixing
vessels, and intercontinental vectors for
various serotypes of avian viruses [8]. Un-
fortunately, knowledge on global spread of
H5N1 is rather limited [9] with ongoing
debates regarding its transmission path-
ways [8, 10].

Although past outbreaks have been spo-
radic and unsustained, several recent investigations have established that with just
one mutation the H5N1 virus gains the ability to be readily transmitted between
humans and a global pandemic is imminent [11]. Consequently, there is heightened
urgency to shift the focus of investigations from studying possibilities to analyz-
ing probabilities of outbreaks to proactively mitigate or even preempt emergent
pandemics [12] in contrast to delayed responses to the 2009 H1N1 pandemic as dis-
cussed in the report by the executive o�ce of the president of the United States [13].
Accordingly, several multinational surveillance e�orts have been initiated to collate
data on various characteristics of migratory species [8]. The surveillance e�orts
include: large scale satellite tracking, banding and tracking of individual birds in
conjunction with satellite telemetry, and various biological sampling and cataloging
e�orts [ 8].

SEARUMS: Ecological and Epidemiological modeling and analysis system
Despite the advancements in technologies and improvements in economies of scale,
data from surveillance is relatively coarse and sparse. Furthermore,�eld observa-
tions and satellite telemetry only provide a snapshot of various natural processes
that in
uence global ecology of the disease. Furthermore, comprehensive epidemi-
ological analysis using e�ective computational models play a pivotal rolein design
and implementation of national and multinational prophylactic strategies and poli-
cies. Consequently, the surveillance data needs to be combined with computational
analysis methods to generate comprehensive, multifaceted information and draw
actionable inferences. However, a versatile and comprehensive software system is
required to enable and the aforementioned computational analyses.

Accordingly, a ecological and epidemiological analysis environment called SEARUMS [14]
(http://www.searums.org/ ) has been developed and is used in this investigation.
The biomathematical models for temporo-geospatial epidemiological analysissup-
plied to SEARUMS are called Eco-descriptions. The software pipelineincludes mod-
ules for generating Eco-descriptions from Geographic Information Systems (GIS)
datasets that has been used in this study (refer to Methods sectionfor details).

http://www.searums.org/
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SEARUMS uses an agent-based descriptive behavioral computational-modeling ap-
proach [15] to elicit epidemiological characteristics [14]. The agents in SEARUMS
implement the classical bio-mathematical compartmental models that are widely
used in epidemiology [16]. In a compartmentalized model the population being
analyzed is partitioned into non-intersecting subsets calledcompartments. Com-
partments are de�ned such that the sub-population within a compartment exhibits
a vital disease characteristic, such as: Susceptible (S), Exposed (E), Infected (I ),
and Recovered (R). The epidemiological characteristics of the classicalSEIR model
is modeled using the following system of di�erential equations:

dS=dt = �N � [� + � ]S(t)

dE=dt = �S (t) � (� + � )E (t)

dI=dt = �E (t) � (v + � )I (t)

dR=dt = vI (t) � �R (t)

The constants � , � , � , and v represent the birth/death rate, the force of infection,
latency period, and recover rates respectively. These constantsare determined based
on the characteristics of the disease being modeled and are suppliedvia the Eco-
description. In SEARUMS spread of infection to various agents occurs when agents
overlap with each other. The system is modeled as discrete time Markov processes
driven by an underlying multi-threaded Discrete Event Simulation (DES) kernel.
Various phenomena that occur during simulation are logged for further analysis. A
more detailed description of SEARUMS is available in the literature [14].

Methods
The focus of this study is to utilize phylogeographic analysis of H5N1 viralstrains to
validate and enhance information about epidemic transmission pathways identi�ed
using temporo-geospatial epidemiological analysis of high risk migratory waterfowl.
The validated and enhanced knowledge is then used to draw furtherconclusions
in addition to serving as a framework for various ecological, phylodynamic, and
prophylactic analyses. Figure2 presents an overview of the various steps involved
in the proposed methodology that are broadly classi�ed into three phases. The �rst
phase involves identi�cation of candidate infection pathways via epidemiological
analysis of migratory patterns of high risk waterfowl species. The second phase
involves phylogeospatial analysis of viral strains to geocode strains in clades. The
third phase combines the results from the �rst two phases to validate and enhance
infection pathways and conduct various analyses. These three phases are discussed
in the following subsections.

Phase 1: Identi�cation of infection pathways in high risk migratory waterfowl

The epidemic model used in this study consisted of all 22 high risk waterfowl
species shown in Table1 that have been collated from earlier publications [17{
20]. The GIS data for the 22 species were obtained from GROMS database [21]
while migratory characteristics were obtained from BirdLife Internat ional Database
(BID) [ 22]. The epidemic model represented as an Eco-description was gener-
ated from the GIS datasets using SEARUM's model generation module. The
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Table 1 List of high risk waterfowl species used for analysis. The list of species was obtained from
earlier publications [17{ 20]

Species Name Popu- #Flocks Species Name Popu- #Flocks
lation lation

Aix sponsa 3500000 64 Anas bahamensis 640000 78
Anas acuta 5300000 372 Amazonetta brasiliensis 110000 103
Anas platalea 500000 47 Anas platyrhynchos 19000000 557
Anas sibilatrix 250000 30 Anas versicolor 126000 42
Anser anser 1000 4 Callonetta leucophrys 50000 3
Aythya ferina 2200000 213 Aythya fuligula 2600000 148
Aythya marila 1200000 114 Branta canadensis 5500000 169
Anser indicus 56000 11 Cygnus melanocoryphus 50000 32
Melanitta nigra 2100000 96 Mergellus albellus 130000 71
Netta peposaca 1000000 26 Philomachus pugnax 4200000 210
Anas Crecca 5900000 403 Porzana pusilla 21300 262

position of various 
ocks in the wintering zones and after migration to sum-
mering zones are shown in Figure3(a) and Figure 3(b). Additional model im-
ages are included in supplementary material with further information available
at http://www.searums.org/glbio14/ , including complete model, high resolution
images, and video illustrating the migration and infection spreads discussed in this
paper.

The epidemiological analysis was conducted by seeding an infection inone Anas
platyrhynchos 
ock in Guangdong, China (at 23°21'36.53"N, 113°36'25.89"E), cor-
responding to the root (A/goose/Guangdong/1996) of the revised WHO H5N1
nomenclature phylogram [23]. The model was con�gured to have a basic reproduc-
tive number for the infection (R 0) to be greater than 1 to re
ect the enzootic nature
of the infection. Furthermore, the disease transmission parameterswere con�gured
to re
ect a Susceptible� Infected (SI) type compartmental epidemiological model.
The model was simulated for a period of three years while logging the locations of
various infections occurring in the model. The stochastic natureof the simulations
require the use of a Monte Carlo approach in which infections consistently occurring
in multiple simulations are identi�ed as the dominant set of infecti ons. Temporo-
geospatial attributes of 
ocks involved in each pair of infection transmission are
collated to yield an infection graph for further processing in phase3. An infection
graph (see Figure7) is a Directed Acyclic Graph (DAG) in which location of 
ocks
are nodes with edges connecting pairs of 
ocks involved in infectiontransmission.

Phase 2: Phylogeographical Analysis of H5N1 strains
The phylogram generation procedure adopted by WHO/OIE/FAO H5N1 Evolu-
tion Working Group [ 23] has been utilized to generate a phylogenetic tree using
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(a) Before Migration (Winter) (b) After Migration (Summer)

Figure 3 Locations where 
ocks (various species color coded) remain for signi�cant portion of
time . Sub�gure (a) shows 
ocks in their initial wintering zone. S ub�gure (b) shows 
ocks in the
summering zones at the end of one seasonal migration. Model details and videos available at
http://www.searums.org/glbio14/

2,417 H5N1-Hemmagglutinin (HA) segments. The viral strains were obtained from
GISAID EpiFlu database [24] by restricting the search to reads longer than 1600
nucleotides (nt ), which corresponds to 90% of the open frame read length [23]. Fur-
thermore, the EpiFlu search query was restricted to a 3 year time period from 2006
to 2009 (inclusive) corresponding to the 3 year period used for epidemiological anal-
ysis in Phase 1. A multiple sequence alignment of the 2,417 H5N1-HA sequences
was generated using MUSCLE [25] (version 3.7) using 16 iterations. A large un-
rooted neighbor-joining tree of the 2,417 H5N1 HA strains was constructed using
a GTR+I+� model in PAUP* v4.0b10 [ 26]. The newick form of the phylogram
generated by PAUP* was used to categorize leaves into clades such that percentage
pairwise nucleotide distances between and within clades are> 1.5% and < 1.5%
respectively, concordant with WHO/OIE/FAO clade de�nition criteri a [23].

The clades identi�ed from the phylogram are marked with unique numbers and
the isolate names are used to geocode each leaf. Geocoding was conducted us-
ing the GeoNames dataset [27] stored in a local MySQL database with suit-
able geospatial indexes to accelerate various SQL queries. The geocoding pro-
cess was conducted in three passes to obtain both region and country encoding
to provide higher geospatial resolution for each sequence. For example,the iso-
late nameA/chicken/Tabanan/BBVD-142/2007 was geocoded toIndonesia , Taban
(rather than just Indonesia ). Similarly, A/Canadagoose/AK/44075-058/2006 was
geocoded toUnited States , Alaska . In order to obtain regional-level geocoding,
the �rst pass attempted to perform exact matches on variousGeoNamestables using
each term in the isolate name. However, if the �rst pass did not yield anexact match
a second pass is performed using a set of manually supplied overrides that were nec-
essary to disambiguate entries. For example,A/ruddy turnstone/DE/509531/2007
must be geocoded toUnited States , Delaware rather than Germany (country code
DE). If the second pass is unsuccessful then a third pass with approximate matching
is pursued. Manual disambiguation is solicited in the third pass if the approximate
queries result in multiple matches. The geocoding information foreach read along
with its clade numbers are persisted for use in the next phase of processing.

Phase 3: Fusing Phylogeographic Clades and Epidemiological Infection Graph
The last phase of the proposed methodology utilizes the phylogeographic data ex-
tracted in Phase 2 to identify and annotate strong infection pathways in the infection

http://www.searums.org/glbio14/
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graph generated in the Phase 1. In this phase, the latitude and longitudevalues for
each pair of verities constituting an edge in the infection graph are reverse geocoded
to identify correspondence with phylogeographic data. Geocoding is performed us-
ing the sameGeoNamesdatabase in multiple passes using increasing radius (1/50,
1/25, and 1 mile) of matching to identify higher resolution regional-level geocodes.
Vertexes that are on ocean surfaces cannot be reverse geocoded and are excluded
from further analysis in this phase.

Pairs of reverse geocoded vertexes are matched with clades containing same pairs
of geocoded regions in the phylogeographic data. Identi�cation of corresponding
clades, calledin
uential clades (see Figure6) is performed by �rst matching on
both region and country (i.e., higher resolution data match) and then just on
the country to ensure strong correspondence. For example, the infection path-
way between <30°52'12"N, 28°22'14.5194"E> { <36°41'4.9194"N, 36°41'4.9194"E>
is geocoded to Matruh, Egypt and Mugla, Turkey respectively with correspon-
dence to a clade containing H5N1 HA sequences from Egypt and Turkey such
as:A/duck/Egypt/08355S-NLQP/2008 and A/chicken/Turkey/Ipsala563/2008 to
enumerate a few. The infection pathway is annotated and persisted forvisualization
and various analyses discussed in the next section.

Results
The �rst phase of epidemiological analysis involving semiregular tessellation of GIS
data resulted in generation of 3055 entities representing 
ocks of 22 high risk wa-
terfowl species tabulated in Table 1. Several calibration runs were conducted to
tune epidemiological parameters to re
ect realistic inter and intra-
ock infection
spread. Each epidemiological analysis cycle required about 4.62 hours to complete
on a 3.9 GHz 8 core processor using 24 concurrent threads. The location of domi-
nant infection transmissions between 
ocks are plotted in Figure4(a). The infection
locations in the �gure are color coded to re
ect the number of intermediate hosts
to the source infection in Guangdong, China (at 23°21'36.53"N, 113°36'25.89"E),
corresponding to the root (A/goose/Guangdong/1996) of the revised H5N1 nomen-
clature phylogram [23]. The locations of various infection transmissions indicate
potential areas for secondary outbreaks and increased density of outbreaksin turn
increase the probability of human outbreaks [10]. The high risk areas as reported
by WHO [3] are highlighted in bright orange in Figure 4(a). The �gure highlights
the overlap between dense outbreaks identi�ed by epidemiological analysis and the
regions with observed human cases reported by WHO [3].

The infection patterns radiate from the primary infection source through S. E.
Asia, Eastern Europe, Western Europe and into North America (as summarized in
Figure 4) con�rm that the infections into North America are signi�cantly distan t
from S. E. Asia. Furthermore, temporal characteristics of the infections indicate that
initial infections into North America has a lag of ~15 months (see video referenced
in supplementary material) with infections seeding occurring via both transatlantic
and transpaci�c migratory corridors. The primary entry locations were observed to
be near the Gulf of Alaska, a known high risk area [18], which consistently shows suf-
�ciently strong infections. Observations of ~15 month lag between S. E. Asia and pri-
mary entry pathways into North America are also corroborated by surveillance [8],
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(a) Location of infections (b) Infection into N. America

Figure 4 Overview of infection spread from Guangdong, China . Sub�gure (a) shows distance of
infection from primary source in terms of number of intermediate hosts (indicative of increase in
viral diversity and lineage) and areas with human outbreaks(in bright orange) as reported by
WHO [3]. Sub�gure (b) shows initial entry of infection into North Ame rica migration.

Figure 5 Overview of 130 clades in phylogenetic tree of 2,417 H5N1-HA sequences from
GISAID EpiFlu database. The phylogram was created via neighbor-joining and GTR+I+ � model
using PAUP*. The clades are color coded and annotated to highlight in
uential clades that
contributed to phylogeocoding of infection pathways. A zoomable image of the complete
phylogenetic tree is available in supplementary materials. Additional information about the clades
are also available in Figure6.

statistical, and bioinformatics analyses reported by other researchers [6, 18, 28]. In
the epidemic analysis logically spanning 3 years, infection spread from North Amer-
ica was constrained to northern South America, with potential for larger infection
spread into South America.

The multiple sequence alignment of 2,417 H5N1-HA sequences (average length:
1710.28� 34.37nt, minimum length: 1602 nt, maximum length: 1809nt ), with min-
imum length of 1600 nt (> 90% open frame read length), spanning a three year
period corresponding to the epidemiological analysis interval, and obtained from
GISAID EpiFlu database [24] resulted in an alignment spanning 1841 nucleotides
in 5 re�nement iterations out of the maximum con�gured 16 iterations. Th e phy-
logram generated from the alignment using neighbor joining and the GTR+I+�
model in PAUP* was categorized into 130 clades using the criteria proposed by
WHO/OIE/FAO [ 23] which requires that percentage pairwise nucleotide distances
between and within clades are> 1.5% and < 1.5% respectively. An overview of
the resulting phylogram is shown in Figure 5. The resulting phylogram was man-
ually cross-veri�ed to be consistent with the WHO/OIE/FAO referen ce taxonomy
phylogenetic tree [23].

The leaves in the phylogram shown in Figure5 were geocoded using the read
names to obtain region and countries. Out of the 2,417 H5N1-HA strains 2,226
(92%) reads were successfully geocoded while the remainder could not be geocoded
either due to lack of information or ambiguity in the reads. Given the high yield,
manual geocoding of the remaining 191 strains was not pursued. The geographic
distribution of the strains in the in
uential clades are summarized by the chart in
Figure 6 (details on all the 130 clades is included in supplementary materials). Out



Rao Page 8 of 12

 0

 50

 100

 150

 200

 250

 300

6

28 33 37 39 48 52 56 67 68 70 81 88

10
1

11
2

11
3

11
5

11
6

11
8

11
9

12
0

12
1

12
2

 0

 50

 100

 150

 200

 250

 300

N
um

be
r 

of
 s

tr
ai

ns
 in

 C
la

de

Clades in Phylogenetic tree

Clade size percentage values are based
on the 2,226 strains that were
successfully phylogeocoded.

* *
*

* * *

*

*
*

* *
*

Red stars indicate clades used
in both summering and wintering
zones for phylogeocoding.

Afghanistan
Austria

Azerbaijan
Bangladesh

Belgium
Benin

Bosnia and Herzegovina
Burkina Faso

Cambodia
Canada

China

Czech Republic
Denmark

Egypt
France

Germany
Ghana

Hong Kong
Hungary

India
Indonesia

Iran

Iraq
Israel

Italy
Ivory Coast

Japan
Kazakhstan

Kuwait
Laos

Malaysia
Mongolia
Myanmar

Niger
Nigeria

Pakistan
Palestinian Territory

Poland
Romania

Russia
Saudi Arabia

Slovakia
Slovenia

South Korea

Sudan
Sweden

Switzerland
Taiwan

Thailand
Togo

Turkey
Ukraine

United Kingdom
United States

Vietnam

1.
08

%

0.
99

%

0.
90

%

0.
18

%

0.
49

%

0.
72

% 1.
39

%

2.
74

%

1.
62

%

1.
26

%

0.
72

%

0.
40

%

0.
36

%

0.
18

%

12
.2

6%

3.
86

%

5.
35

%

4.
22

%

2.
11

% 3.
32

%

0.
99

%

0.
85

% 1.
93

%

Figure 6 Overview of the 23 in
uential clades that were used to annotate th e edges in the
infection graphs shown in Figure 7. Full details on all the clades and a complete phylogenetic
tree are available in supplementary materials

(a) Wintering zone (b) Summering zone

Figure 7 Infection graphs with phylogeographic annotations color coded to mat ch in
uential
clades. Grey edges do not have corresponding phylogeographic annotations (primarily due to lack
of viral isolates from southern hemisphere). Sub�gure (a) shows 
ocks in their initial wintering
zone. Sub�gure (b) shows 
ocks in the summering zones at the end of one seasonal migration.

of the 130 clades 43 clades were singletons while 15 clades had only two leaves in

them and these clades were excluded from further analysis. The remaining clades

had an average size of 32.4� 43.15 leaves with a median size of 18.5 with majority of

the clades spanning multiple countries. Clade#122 (corresponding to clade2.2 of

WHO/OIE/FAO taxonomy) was the largest and most diverse clade consistent with

the revised H5N1 taxonomy phylogram with almost 50% of the reads from Egypt,

consistent with increased surveillance e�orts between 2006 to 2008.

The 72 geocoded clades were used for phylogeographic annotation of the infec-

tion graph generated from epidemiological analysis of the infection spread.The

infection graph corresponding to summering and wintering zones generated by an-

notating edges (infection pathways) using phylogeographic annotations isshown in

Figure 7. Note that these are the regions were the 
ocks predominantly roost and

are primary locations for cross species infections. Out of the 72 geocoded clades

only 28 were in
uential in annotation in wintering zone (Figure 7(a)) and 12 were

in
uential in summering zone (Figure 7(b)). Furthermore, the 13 in
uential clades

(denoted by red stars in Figure 6) overlapped with the 23 in
uential clades from

the summering zone. Moreover, the largest and most diverse clade#112 did not

dominate annotation in either zones and thereby minimizing concerns ofskews due

to sampling bias in the phylogeographic data. Interestingly, the 23 in
uential clades

yielded annotations for just 27.8% of the edges in the wintering zone in contrast to

12 in
uential clades managing to annotate 59.73% of the edges in summering zone.
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Discussions and Conclusions
The aggregate data obtained from the result of fusing phylogeographic and epi-
demiological data are shown in Table2. The dominant country from the various
clades is China, spanning 13 of the 23 in
uential clades followed by Vietnam in 4
clades. The data indicates that these countries have large diversity in the enzootic
strains. Furthermore, the corresponding set of edges in the infection graphs shown
in Figure 7(a) are predominantly located in S. E. Asia with bidirectional edges
indicating cyclical infection patterns. Fusing phylogeographic data and the infec-
tion pathways from epidemiological analysis provides novel evidenceindicating the
increased potential for reassortments to occur in this region.

The data in Table 2 shows a signi�cant variation in the number of edges annotated
by in
uential clades between summering and wintering seasons. The number of in-

uential clades increases in wintering zone because the birds migrate down south
and spread out across many countries. This time frame also coincides with increase
in in
uenza epidemics in the temperate and subtropical regions thereby increasing
the potential for reassortment between human and avian in
uenza viruses leading
to emergent of novel and possibly highly virulent strains that cause mortality in
humans. These inferences are consistent with prior investigations reported by vari-
ous researchers and multinational surveillance organizations [2, 9, 10, 18{ 20]. How-
ever, the signi�cant evidence correlating migratory patterns of high risk waterfowl
species to the \breeding grounds" of novel H5N1 strains using phylogeographic-
epidemiological analysis is an original and unique inference from this research. in
addition to providing a complementary perspective on the ecological aspects of
avian in
uenza, the inferences increase con�dence in the proposedmethodology.

The locations of infections that occur during migration, which correspond to mi-
gratory stopover sites, are highlighted in Figure 4(a) show strong correspondence
with the high risk regions reported by WHO [3]. Many of the infection pathways
that arise due to intercontinental waterfowl migration show strong relationship be-
tween Asia and Europe. Successful phylogeographic annotation of these pathways
substantiate their validity because isolation of many closely related (less than 1.5%
nt, i.e., fewer than 28 bases out of 1841nt ) H5N1 strains and the exploratory data
analysis provide statistically signi�cant evidence to clearly reject the null hypothesis
that the infection pathways are a mere coincidence.

The phylogeographically annotated epidemiological data related to entry of infec-
tions into Americas is also consistent with surveillance [8], statistical, and bioinfor-
matics analyses reported by other researchers [6, 18, 28]. Speci�cally, the infection
graph correctly elicits Alaska as a primary gateway point into Americas [18, 19] and
the temporal characteristics show reported minimum of~15 month lag between S.
E. Asia and Americas [28]. The bidirectional infection patterns between North and
South Americas suggest continuous circulation of viruses providing support for the
isolated clade#6. These aforementioned observations add further credence in the
proposed methodology and validity of the underlying epidemiological model.

The phylogeographic dataset used in this study did not contain viral isolates to
support the transatlantic infection pathways shown in Figure 7. Analysis of the long
read (at least 1600nt ) H5N1-HA strains isolated from United States since 2006 in
the GISAID EpiFlu database indicates that they are closely related to the strains
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Table 2 Details on 23 in
uential clades involved in phylogenetic coding of pathways in the infection
graph. The strain count percentages are based on 2,226 strains (out of 2,417) that were successful
geocoded. The percentages of edges annoted is based on 25,625 and 54,500 (out of 91,245) edges in
summering and wintering zones respectively that were successfully phylogeocoded.

Clade Strain Countries in the clade # Edges Annotated
Num. Count (# strains) Wintering Summering

6
24

(1.08%) United States (24)
6190

(24.38%)
3700

(6.79%)

28
22

(0.99%) Cambodia (11), Vietnam (11)
210

(0.83%)
0

(0.00%)

33
20

(0.90%) India (1), Thailand (18), Vietnam (1)
3640

(14.34%)
5

(0.01%)

37
4

(0.18%) China (2), Hong Kong (1), Malaysia (1)
120

(0.47%)
0

(0.00%)

39
11

(0.49%) China (10), Laos (1)
350

(1.38%)
0

(0.00%)

48
16

(0.72%) China (11), Myanmar (4), Vietnam (1)
1030

(4.06%)
0

(0.00%)

52
31

(1.39%) Laos (26), Thailand (3), Vietnam (2)
460

(1.81%)
0

(0.00%)

56
61

(2.74%)
China (27), Hong Kong (4), Taiwan (1), Viet-
nam (29)

40
(0.16%)

0
(0.00%)

67
36

(1.62%)
China (13), Mongolia (18), Russia (4), Viet-
nam (1)

585
(2.30%)

3890
(7.14%)

68
28

(1.26%)
China (9), Hong Kong (5), Japan (5), Laos
(3), South Korea (6)

35
(0.14%)

0
(0.00%)

70
16

(0.72%) China (4), Hong Kong (12)
1710

(6.74%)
705

(1.29%)

81
9

(0.40%) Indonesia (9)
10

(0.04%)
80

(0.15%)

88
8

(0.36%) China (1), Indonesia (7)
15

(0.06%)
50

(0.09%)

101
4

(0.18%) Egypt (4)
90

(0.35%)
0

(0.00%)

112
274

(12.31%)

Austria (13), China (9), Czech Republic (9),
Egypt (102), France (6), Germany (46), Hun-
gary (5), Iraq (8), Israel (5), Italy (3), Nigeria
(16), Palestinian Territory (5), Romania (5),
Russia (2), Slovakia (3), Slovenia (5), Sweden
(2), Switzerland (13), Turkey (17)

2275
(8.96%)

4655
(8.54%)

113
86

(3.86%)
Benin (2), Burkina Faso (6), Ghana (4), Ivory
Coast (2), Nigeria (60), Sudan (9), Turkey (3)

770
(3.03%)

0
(0.00%)

115
202

(9.07%)
China (5), Niger (87), Nigeria (83), Romania
(9), Saudi Arabia (12), Togo (3), Turkey (3)

5
(0.02%)

0
(0.00%)

116
94

(4.22%)

Bosnia and Herzegovina (1), China (6), Czech
Republic (2), Denmark (19), Germany (43),
Hungary (1), Poland (5), Romania (2), Russia
(1), Sweden (10), Turkey (3), United Kingdom
(1)

345
(1.36%)

1425
(2.61%)

118
47

(2.11%) Bangladesh (15), India (32)
455

(1.79%)
0

(0.00%)

119
74

(3.32%)

Czech Republic (2), France (1), Germany (28),
Kuwait (9), Mongolia (1), Nigeria (3), Poland
(4), Romania (3), Russia (3), Saudi Arabia
(2), Switzerland (1), Turkey (6), Ukraine (1),
United Kingdom (10)

1695
(6.68%)

38555
(70.74%)

120
22

(0.99%)
China (3), Japan (1), Mongolia (1), Pakistan
(2), Russia (6), South Korea (9)

2190
(8.63%)

295
(0.54%)

121
20

(0.90%) Afghanistan (6), Pakistan (12), Turkey (2)
80

(0.32%)
105

(0.19%)

122
43

(1.93%)

Azerbaijan (5), Bangladesh (1), China (10),
India (5), Iran (3), Italy (2), Russia (14),
Turkey (3)

3085
(12.15%)

1035
(1.90%)
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in clade #6 shown in the �rst row of Table 2. However, the number of samples
in the database from West European and Scandinavian countries is very few and
that impacts the extent of annotation of transatlantic pathways. However, given the
foregoing analysis that provides strong support for the underlying epidemiological
model, these infection pathways cannot be dismissed and consequently emphasize
the need for concentrated surveillance e�orts in these regions.

The GISAID EpiFlu database does not contain su�cient number of viral st rains
from the southern hemisphere in the analysis timeframe spanning 2006 to 2009.
The database contains (completely ignoring date ranges) just two strainsfrom the
whole of South America, 34 strains from Africa (excluding countries already in-
cluded in this study), one from Oceania (includes: Australia, New Zealand and
several smaller island nations), and zero from Antarctica. Consequently, a large
fraction of the infection pathways to countries in the southern hemisphere could not
be phylogeographically annotated. The lack of phylogenetic data from the southern
hemisphere is more pronounced during wintering seasons as highlighted in Table 2
because birds migrate towards the equator. The lack of strains motivatesincrease
surveillance when viewed in the context of the aforementioned analyses that provide
strong evidence for the proposed methodology in the northern hemisphere. More-
over, the nodes in the infection graph with large degrees of unannotatededges serve
as landmarks for guiding surveillance e�orts.

Inferences drawn from this research provide strong validation for the proposed
methodology and the underlying epidemiological model. The study indicates that
the fusion of phylogeography with epidemiology can provide novel, yet intuitive re-
sults and is a distinctive approach for ecological and epidemiological analysis. For
instance, nodes with high degrees serve as epicenters for enactingvarious prophy-
lactic and containment strategies. Moreover, having identi�ed novel strains in S.
E. Asia, nodes along the transmission pathways in the infection graph canbe ac-
tively monitored to strategically assess propagation characteristics thereby enabling
proactive design of vaccines and prophylactic measures to contain epidemics in hu-
mans and livestock. The proposed methodology involving an unique combination of
temporo-geospatial epidemiology and phylogeography provides support for pioneer-
ing new in silico approaches for study and analysis of disease ecology, epidemiology,
viral phylodynamics, and prophylaxis.

Competing interests
The authors declare that they have no competing interests.

Author's contributions
Rao conceived the proposed method, conducted experiments,and authored the paper.

References
1. Trifonov, V., Khiabanian, H., Rabadan, R.: Geographic dependence, surveillance, and origins of the 2009

in
uenza a (h1n1) virus. New England Journal of Medicine 361(2), 115{119 (2009).
doi:10.1056/NEJMp0904572. PMID: 19474418. http://www.nejm.org/doi/pdf/10.1056/NEJMp0904572

2. Sonnberg, S., Webby, R.J., Webster, R.G.: Natural historyof highly pathogenic avian in
uenza f H5N1g. Virus
Research178(1), 63{77 (2013). doi: 10.1016/j.virusres.2013.05.009

3. WHO: World Health Organization: Global Health Observatory M ap Gallery. Areas with con�rmed human cases
for avian in
uenza A(H5N1) reported to WHO, 2003-2013 (2013).
http://gamapserver.who.int/mapLibrary/Files/Maps/20 03_AvianInfluenza_GlobalMap_01Feb13.png

4. CDC: First Human Avian In
uenza A (H5N1) Virus Infection Repo rted in Americas (2014).
http://www.cdc.gov/flu/news/first-human-h5n1-americ as.htm



Rao Page 12 of 12

5. Li, I.W.S., Chan, K.H., To, K.W.K., Wong, S.S.Y., Ho, P.L., L au, S.K.P., Woo, P.C.Y., Tsoi, H.W., Chan,
J.F.W., Cheng, V.C.C., Zheng, B.J., Chen, H., Yuen, K.Y.: Di� erential susceptibility of di�erent cell lines to
swine-origin in
uenza a h1n1, seasonal human in
uenza a h1n1, and avian in
uenza a f H5N1g viruses. Journal
of Clinical Virology 46(4), 325{330 (2009). doi: 10.1016/j.jcv.2009.09.013

6. Gilbert, M., Pfei�er, D.U.: Risk factor modelling of the s patio-temporal patterns of highly pathogenic avian
in
uenza (hpaiv) h5n1: A review. Spatial and Spatio-temporal Epidemiology 3(3), 173{183 (2012).
doi:10.1016/j.sste.2012.01.002

7. Normile, D.: Avian in
uenza: Evidence points to migratory birds in H5N1 spread. Science311(5765), 1225
(2006). doi:10.1126/science.311.5765.1225

8. USDA: Assessment of introduction pathway for novel avianin
uenza virus into north america by wild birds
from eurasia. Technical report, United States Department of Agriculture (USDA)'s Animal & Plant Health
Inspection Service (APHIS) Department of Veterinary Services and Centers for Epidemiology and Animal
Health (May 2013). Available online. http://www.aphis.usda.gov/newsroom/hot_issues/avian _
influenza/contents/printable_version/ai_pathway_ass essment.pdf

9. Liang, L., Xu, B., Chen, Y., Liu, Y., Cao, W., Fang, L., Feng, L., Goodchild, M.F., Gong, P.: Combining
spatial-temporal and phylogenetic analysis approaches for improved understanding on global h5n1 transmission.
PLOS One 5(10), 13575 (2010). doi:10.1371/journal.pone.0013575

10. Fuller, T.L., Gilbert, M., Martin, V., Cappelle, J., Hoss eini, P., Njabo, K.Y., Aziz, S.A., Xiao, X., Daszak, P.,
Smith, T.B.: Predicting hotspots for in
uenza virus reassortment. Emerging Infectious Diseases19(4) (2013).
doi:10.3201/eid1904.120903

11. Tharakaraman, K., Jayaraman, A., Raman, R., Viswanathan, K., Stebbins, N.W., Johnson, D., Shriver, Z.,
Sasisekharan, V., Sasisekharan, R.: Glycan receptor binding of the in
uenza a virus f H7N9g hemagglutinin.
Cell 1016(10) (2013). doi: 10.1016/j.cell.2013.05.034

12. Rappuoli, R., Dormitzer, P.R.: In
uenza: Options to Imp rove Pandemic Preparation. Science336(6088),
1531{1533 (2012). doi:10.1126/science.1221466. http://www.sciencemag.org/content/336/6088/1531.ful l.pdf

13. President's Council of Advisors on Science and Technology: Report To The President on Engineering The
In
uenza Vaccine Production Enterprise to Meet The Challenges of Pandemic In
uenza (2010).
http://www.whitehouse.gov/sites/default/files/micro sites/ostp/Vaccinology-Backgrounder.pdf

14. Rao, D.M., Chernyakhovsky, A., Rao, V.: Modeling and analysis of global epidemiology of avian in
uenza.
Environmental Modelling & Software 24(1), 124{134 (2009). doi: 10.1016/j.envsoft.2008.06.011

15. Pullum, L.L., Ozmen, O.: Early results from metamorphic testing of epidemiological models. In: BioMedical
Computing (BioMedCom), 2012 ASE/IEEE International Confe rence On, pp. 62{67 (2012).
doi:10.1109/BioMedCom.2012.17

16. Brauer, F., Castillo-Chavez, C.: Mathematical Models for Communicable Diseases. SIAM, 3600 Market Street,
Philadelphia, PA 19104-2688, USA (2013)

17. Hagemeijer, W., Mundkur, T.: Migratory Flyways in Europe , Africa, and Asia and the Spread of HPAI H5N1.
In: International Scienti�c Conference On Avian In
uenza a nd Wild Birds, Rome, Italy (2006). FAO and OIE

18. Wilson, H.M., Petersen, M.R., Sexson, M.G.: Relation of highly pathogenic avian in
uenza (h5n1) prevalence
to migration patterns of paci�c common eiders nesting in northwest alaska: Summary report, 2007-northwest
alaska. Technical report, U.S. Fish and Wildlife Service and U.S. Geological Survey (September 2007).
Available online. http://alaska.fws.gov/mbsp/mbm/waterfowl/surveys/pd f/nwak_ai_coei.pdf

19. Gilbert, M., Xiao, X., Domenech, J., Lubroth, J., Martin , V., Slingenbergh, J.: Anatidae migration in the
western palearctic and spread of highly pathogenic avian in
uenza H5N1 virus. Emerging Infectious Diseases
12(11) (2006). doi: 10.3201/eid1211.060223

20. Takekawa, J.Y., Newman, S.H., Xiao, X., Prosser, D.J., Spragens, K.A., Palm, E.C., Yan, B., Li, T., Lei, F.,
Zhao, D., Douglas, D.C., Muza�ar, S.B., Ji, W.: Migration of waterfowl in the east asian 
yway and spatial
relationship to hpai h5n1 outbreaks. Avian Diseases Digest5(s1), 101{102 (2010)

21. GROMS: Global Register of Migratory Species (GROMS): Summarising Knowledge about Migratory Species for
Conservation (2013). http://groms.gbif.org/

22. BirdLife International: BirdLife Data Zone (2012). http://www.birdlife.org/datazone/home
23. Group, W.H.E.W.: Continued evolution of highly pathogenic avian in
uenza a (h5n1): updated nomenclature.

In
uenza and Other Respiratory Viruses 6(1), 1{5 (2012). doi: 10.1111/j.1750-2659.2011.00298.x
24. Editorial: Action stations: The time for sitting on 
u da ta is over. Nature 441(7097), 1028{1028 (2006).

doi:10.1038/4411028b
25. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res.

32(5), 1792{1797 (2004). doi: 10.1093/nar/gkh340
26. Swo�ord, D.L.: PAUP*: Phylogenetic analysis Using Parsimony (and Other Methods) 4.0 Beta (2003).

http://paup.csit.fsu.edu/
27. GeoNames: GeoNames Geographical Database (2014).http://www.geonames.org/
28. Russell, C.A., Jones, T.C., Barr, I.G., Cox, N.J., Garten, R.J., Gregory, V., Gust, I.D., Hampson, A.W., Hay,

A.J., Hurt, A.C., de Jong, J.C., Kelso, A., Klimov, A.I., Kage yama, T., Komadina, N., Lapedes, A.S., Lin, Y.P.,
Mosterin, A., Obuchi, M., Odagiri, T., Osterhaus, A.D.M.E. , Rimmelzwaan, G.F., Shaw, M.W., Skepner, E.,
Stohr, K., Tashiro, M., Fouchier, R.A.M., Smith, D.J.: The G lobal Circulation of Seasonal In
uenza A (H3N2)
Viruses. Science320(5874), 340{346 (2008). doi: 10.1126/science.1154137


