
Accelerating Parallel Agent-based
Epidemiological Simulations

Dhananjai M. Rao
CSE Department

Miami University, Oxford, OHIO, USA
raodm@miamiOH.edu

ABSTRACT
Background: Simulations play a central role in epidemio-
logical analysis and design of prophylactic measures. Spa-
tially explicit, agent-based models provide temporo-geospatial
information that cannot be obtained from traditional equation-
based and individual-based epidemic models. Since, simu-
lation of large agent-based models is time consuming, op-
timistically synchronized parallel simulation holds consider-
able promise to significantly decrease simulation execution
times.

Problem: Realizing efficient and scalable optimistic par-
allel simulations on modern distributed memory supercom-
puters is a challenge due to the spatially-explicit nature
of agent-based models. Specifically, conceptual movement
of agents results in large number of inter-process messages
which significantly increase synchronization overheads and
degrades overall performance.

Proposed solution: To reduce inter-process messages,
this paper proposes and experimentally evaluates two ap-
proaches involving single and multiple active-proxy agents.
The Single Active Proxy (SAP) approach essentially accom-
plishes logical process migration (without any support from
underlying simulation kernel) reflecting conceptual move-
ment of the agents. The Multiple Active Proxy (MAP)
approach improves upon SAP by utilizing multiple agents
at boundaries between processes to further reduce inter-
process messages thereby improving scalability and perfor-
mance. The experiments conducted using a range of models
indicate that SAP provides 200% improvement over the base
case and MAP provides 15% to 25% improvement over SAP
depending on the model.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete event, Parallel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS’14, May 18–21, 2014, Denver, CO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2794-7/14/05 ...$15.00.
http://dx.doi.org/10.1145/2601381.2601387.

General Terms
Algorithms; Performance

Keywords
Time Warp; Logical Process Migration; Ghosting; Perfor-
mance Improvement

1. INTRODUCTION
Humanity continues to face a multitude of global socioe-

conomic challenges due to annual epidemics and punctu-
ated pandemics of highly virulent zoonoses such as avian
influenza (H5N1, H7N9) and the 2009 swine flu (H1N1) pan-
demic. Moreover, diseases such as seasonal Influenza are of
global importance because they annually affect ~90 million
people globally, causing about 250,000 to 500,000 human fa-
talities [28] and billions of dollars of annual losses due to
recurrent epidemics both in humans and livestock.

Importance of modeling and simulation in epidemi-
ology: Epidemiological Modeling and Simulation (M&S)
plays a pivotal role in study and analysis of diseases, phy-
lodynamics, and design of prophylactic measures to contain
epidemics [24, 18, 27]. Encouraged by advancement in com-
puting technology and catalyzed by the need for detailed
epidemiological analysis of emergent diseases, Agent-based
Modeling (ABM) is gaining importance over traditional epi-
demiological modeling [24, 18, 27]. Figure 1 illustrates an
ABM viewed in SEARUMS, the M&S environment used
in this study, and Section 3 provides additional details on
ABM.

Need for Parallel Simulation: Unfortunately, the ad-
vantages of ABMs are realized at the cost of significantly
higher simulation execution time because ABMs are com-
putationally demanding. For example, a single threaded
(not counting garbage collector and other background Java
threads) simulation of 3,088 (namely model M4 discussed in
Section 9) mobile agents in SEARUMS requires about 25
hours on a 3.5 GHz Intel i7-3770K CPU. The issue of long
simulation execution times is magnified by the need to con-
duct a large number of repetitions (~200,000 repetitions are
not uncommon [8]) with different parameters to analyze var-
ious scenarios.

A PDES Environment (prior research): Parallel sim-
ulation holds considerable promise to significantly decrease
simulation execution times and enabling effective use of ABMs.
Accordingly, our earlier investigations focused on develop-
ing a modeling, simulation, and analysis environment called
SEARUMS for study and analysis of the role of migratory

PDES Monitoring & Control

Graphical view of Agent-based Model (ABM)
of three high risk waterfowl species

Model-level Events
and Logs

Agent Editor
Graph
Pane

Figure 1: Screenshot of an Agent-based Model
(ABM) viewed in SEARUMS, the M&S environ-
ment used in this study (see Section 2 for details.)

waterfowl in intercontinental spread of Avian Influenza [23,
22]. The graphical frontend is in Java while the simula-
tion infrastructure operates as an optimistically synchro-
nized Parallel Discrete Event Simulation (PDES) in C++.
Figure 1 shows a screenshot of SEARUMS [23] while Sec-
tion 2 presents an overview of the environment.

1.1 Motivation: Scalability Problems
The PDES infrastructure of SEARUMS provided good

performance improvement over the initial conservatively syn-
chronized, Java-based multithreaded kernel as reported in
our earlier publication [21]. However, the PDES did not effi-
ciently scale as the number of mobile agents in the model was
increased even when optimism was throttled. The root cause
of the issue was experimentally identified to be large number
of Inter-Process Messages (IPMs) that increased synchro-
nization overheads and degraded performance. IPMs arise
because agents are initially partitioned to different compute
nodes (on the compute cluster used for PDES) and they do
not physically move (the C++ class for an agent is fixed on
a compute node), but only move logically by changing state.
However, as illustrated in Figure 2, as agents logically move
they have to interact with agents on a different compute
node giving raise to IPMs. Consequently, as simulation time
advances from t0 to t2 (t0 < t1 < t2), the communication
patterns change increasing IMPs.

IPMs negatively impact synchronization resulting in de-
graded scalability and performance as illustrated by the charts
in Figure 3. The graphs in Figure 3 also illustrate the strong
correlation (Pearson correlation coefficient r = 0.98, p-value
< 0.0001) between IPMs (Figure 3(a)) and rollbacks (in Fig-
ure 3(b)) as well as a strong correlation (r = 0.96, p-value <
0.0001) between inter-process messages and simulation exe-
cution time (Figure 3(c)).

1.2 Solution Overview & Paper Outline
In continuation with the foregoing discussions, the volume

of Inter-Process Messages (IPMs) arising due to movements
of agents had to be reduced to improve scalability and per-
formance. Reducing IPMs requires that interacting agents
must be predominantly on the same compute node – im-
plying that as agents logically migrate they must be corre-

@t2

Local events
@ t0

Remote events
@ t1

Remote events
@ t2

(a) Conceptual view of changes in commucation
 patterns due to movements of an agent

(b) Corresponding change from local to remote events as
 C++ objects for agents are on the same compute node.

Compute Node 3 Compute Node 2 Compute Node 1

2

3
4

5

6

7

As simulation time advances from t0→t1→t2, agent #1 moves
and agents in its proxmity change from {2,3} → {4,5} → {6,7}.

1

3

2

4

5

6

7

@t0@t1

1
1

1

Figure 2: Overview of Problem: Increase in Inter-
Process Messages (IPMs) due to conceptual move-
ment of agents

spondingly repartitioned or relocated to a different compute
node.

Accordingly, the notion of proxy agents for each mobile
agents was introduced on each compute node used for PDES.
As an agent logically migrates across process boundaries,
it logically deactivates itself after activating an appropriate
proxy on a different compute node. Therefore, only one
proxy-agent is active at any given time. This strategy, called
Single Active Proxy (SAP) approach, is discussed in further
detail in Section 5. SAP essentially accomplishes logical
(rather than physical [16]) process migration, events thereby
reducing IPMs.

However, as detailed in Section 6, the SAP approach still
experienced performance issues at boundary cases when an
agent’s neighborhood spans two more partitions. Conse-
quently, a Multiple Active Proxy (MAP) approach is pro-
posed to address three different boundary cases that arose
in SAP approach. The MAP approach extends the SAP ap-
proach by permitting multiple proxies to be active at the
boundary cases when an agent spans two or more partitions
to minimize IPMs. Section 7 presents the MAP approach
followed by Section 8 that contrasts SAP and MAP with
related research investigations. Section 9 discusses results
from various experiments conducted to assess SAP and MAP
approaches. Section 10 concludes the paper by summarizing
the outcomes and inferences drawn from this paper.

2. SEARUMS: M&S ENVIRONMENT
SEARUMS is the epidemiological modeling, parallel sim-

ulation, and analysis software system used in this study. An
architectural overview of SEARUMS is shown in Figure 4
and a screenshot of its Graphical User Interface (GUI) is

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

n
e
tw

o
rk

 m
e
s
s
a
g

e
s

Number of cores (i.e., number of processes in PDES)

Number of inter-process messages (exchanged over network)

The following data point deviates from nominal
curve (dotted line) due to Boundary Cases (BCs)
BC #2 and BC #3 discussed
further in the paper arising
due to partitioning. As the
number of cores increases,
the effects occur consistently,
as per expectations.

In all charts, the shaded area
shows 95% confidence interval

No Proxies: Inter-process messages

(a) Inter-Process Messages (IPMs)

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

ro
ll
b

a
c
k
s

Number of cores (i.e., number of processes in PDES)

Optimistic Synchronization overheads

The chart shows strong correlation between
inter-process messages and rollbacks, which
impact PDES efficiency and performance.

In all charts, the shaded area tracks
95% confidence interval indicated
by the vertical bars at each data point

No Proxies: Rollbacks

(b) Rollbacks

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60

S
im

u
la

ti
o
n

 r
u

n
ti

m
e
 (

s
e
c
o
n

d
s
)

Number of cores (i.e., number of processes in PDES)

Scalability issues observed in a model

Data for model model M3 that has 10,076 agents
out of which 44 agents are mobile.

In all charts, the shaded
area tracks the
95% confidence interval
indicated by the vertical
bars at each data point

No Proxies: Average runtime (sec)
Theoretical linear scalability reference timing

(c) PDES execution time

Figure 3: Experimental data (without proposed solu-
tion from model M3 discussed in Section 9) illustrat-
ing lack of scalability in PDES execution

shown in Figure 1. The GUI and associated frontend com-
ponents have been developed in Java. The frontend modules
enable execution of simulations in an offline, non-GUI mode
to ease experimental analysis. These modules also handle
partitioning of model using several different strategies.

The backend parallel simulation infrastructure of SEARUMS
has been developed in C++ using WESE. WESE is a gen-
eral purpose, web-enabled, Time Warp synchronized frame-
work that eases development of parallel and distributed sim-
ulations [19]. It has been developed by suitably extending
the WARPED simulation kernel [5] which provides the core
Time Warp infrastructure. WESE further customizes WA-

RPED to provide web-based features for modeling, parallel
simulation, I/O stream centralization, monitoring, and con-
trol.

In WESE a Factory is deployed on a compute node and
acts as an agent repository as well as a simulation server
that is part of a PDES. The communication subsystem can
be configured to operate using different network protocols
and handles the tasks of interacting with other WESE fac-
tories used for PDES. A session manager (on each Factory

used for PDES) is used to coordinate, monitor, and con-
trol a PDES. The session manager also handles the task of
creating local agents partitioned to execute on the Factory.

Agents executing on a Factory share a scheduling system
for management of virtual timestamped events generated
during PDES. Therefore, events exchanged between agents
on the same WESE Factory never cause rollbacks. How-
ever, the agents are not coerced into synchronizing with each
other. Conversely, inter-Factory events, that are exchanged
over the network give raise to straggler events resulting in
rollbacks. The Time Warp infrastructure of WESE uses
traditional state saving and rollback-based mechanism to re-
cover from causal violations. A Global Virtual Time (GVT)
based approach is used for garbage collection and manage-
ment of optimistic I/O streams. Further details on the var-
ious software modules constituting the frontend and backed
of SEARUMS is available in the literature [21, 23].

3. BACKGROUND: EPIDEMIC MODELS
Modeling and Simulation (M&S) plays a pivotal role in

epidemiological analysis, phylodynamics, bionomics, and de-
sign of prophylactic measures to contain epidemics [24, 18,
27]. Epidemiological models are classified into Equation-
based models (EBMs) (also called compartmental models),
Individual-based Models (IBMs), and Agent-based Models
(ABMs) [24, 18, 27]. EBMs use Ordinary Differential Equa-
tions (ODEs) to model transition of population between
disease states or compartments such as: Susceptible → In-
fected → Recovered (SIR) [3]. Unlike EBMs that model
the population as homogeneous aggregate compartments,
IBMs model individuals in the population to explore hetero-
geneity, phylodynamics, antigenic drift, and other important
epidemiological phenomena. However, IBMs are stochastic
models and typically do not embody geospatial characteris-
tics of diseases [18, 27].

Agent-based Models (ABMs) further extend IBMs to pro-
vide additional details in interactions between individuals,
including geospatial characteristics, enabling in depth analy-
sis of various phenomena and prophylactic measures [18, 24].
In contrast to EBMs, ABMs are descriptive rather than pre-
scriptive models. Consequently, ABMs are most effective in
epidemiological analysis of emergent diseases whose charac-
teristics are not well understood [18, 24]. Furthermore, un-
like EBMs and IBMs, ABMs can be readily extended to em-
body other aspects of the system. Moreover, ABMs enable
more vivid and intuitive temporo-geospatial visualization for
various analysis. However, the advantages of ABMs are re-
alized at the cost of increased simulation execution times
because ABMs are computationally demanding. Neverthe-
less, ABMs are gaining importance because PDES method-
ologies coupled with proliferation of affordable supercom-
puting provide an effective solution to meet computational
demands making ABM an attractive approach. The investi-
gations reported in this paper focus on improving scalability

and performance of parallel simulation of spatially explicit,
epidemiological ABMs.

4. MODELS IN SEARUMS
The SEARUMS models used in this study are agent-based,

spatially-explicit models of global epidemiology of avian in-
fluenza. The Agents embody the classical SIR (Suscepti-
ble → Infected → Removed) mathematical models [3] and
are used to describe the epidemiological behaviors of the
the three salient entities, namely: waterfowl, poultry, and
humans. The agents are specifically designed to ease ef-
fective use of real world statistical data. The conceptual
design of each agent is based on discrete time Markov pro-
cesses [23] that implement the SIR mathematical model.
Figure 5 presents an overview of the Markov processes along
with the SIR mathematical model constituting the three
main agents in the models used in this study. Various dis-
crete state transitions and inter-agent interactions are ac-
complished via virtual timestamped events.

remaining susceptible at time t, and R is the
where s(t) is the proportion of population

basic reproductive rate, is death rate,

v is recovery rate, and (t) is infection rate.

d /dt=[v+] (t)[R s(t)−1]

ds/dt= −[+ (t)]s(t)

µ
λ

λ µ λ 0

0

µλ λ

λ(t)>0

µ
=

0
,λ

(
)

=
φ

(
)

,
t

 t

 R

o
>

1

MIGRATION TRANSITIONS

SUCSEPTIBLE

TRANSMITTING

I
N

F
E

C
T

E
D

Ro 0µ=λ= =

WATERFOWL

W0

W2

W1

λ(t)=0

λ(t)>0

µ=φ(τ),λ= =Ro 0

R
E
G
E
N
E
−

R
A
T
I
O
N

µ
=

0
,λ

(
)

=
φ

(
)

,
t

 t

 R

o
>

1

TRANSMITTING

SUCSEPTIBLE

INFECTED

POULTRY

P0 P1

P2

λ(t)=0

λ(t)>0

R
E
G
E
N
E
−

R
A
T
I
O
N

H
E
A
L
I
N
G
/

F
A
T
A
L
I
T
I
E
S

SUCSEPTIBLE

INFECTED

HUMAN

µ=0,λ= =Ro 0 µ=0,λ()=φ(),t t

Ro>1

H0 H1

Figure 5: Overview of Susceptible → Infected → Re-
covered (SIR) state transitions in various agents.

The spatial interactions between agents are modeled us-
ing one or more EcoArea agents that represents Earth’s sur-
face. Typically, in a PDES the number of EcoArea agents
correspond to the number of compute nodes used for simu-
lation. The Earth’s surface is evenly subdivided into non-
overlapping regions and assigned to each EcoArea. EcoAreas

receive updates from agents overlapping its area whenever
an agent changes selected attributes, such as: current coor-
dinate, infection percentages, and population changes. The
EcoArea components tracks agents in its purview and uses
the information to detect and trigger interactions between
overlapping agents by scheduling events.

4.1 Model Generation and Validation
The models used in this study have been developed us-

ing real-world statistical data on: waterfowl migration [11],
high risk waterfowl species [9], global poultry population
and distribution [10], and global human population distri-
bution information [25]. We have already published ap-
proaches for verification of the models using bioinformatics
and viral isolates [20] as well as statistical analysis against
temporo-geospatial data on epidemic outbreaks reported by
the World Health Organization (WHO) [22]. Readers are
referred to our earlier publications [23, 22, 20] for details on
model generation, verification, and various analysis. How-
ever, pertinent sections of our prior publications are included
in the appendix.

5. SINGLE ACTIVE PROXY (SAP)
In continuation with the foregoing discussions in Section 1.1

about the problem, the volume of Inter-Process Messages
(IPMs) arising due to movements of agents had to be re-
duced to improve scalability and performance. Reducing
IPMs requires that interacting agents must be predominantly
on the same compute node – implying that as agents logi-
cally migrate they must be correspondingly repartitioned
or relocated to a different compute node. Accordingly, the
notion of proxy agents was introduced in the simulation.
Proxy agents are agents that are automatically created for
each mobile agent on each compute node used for PDES as
shown in Figure 6. As the center of an agent logically moves
across EcoArea boundaries, it logically deactivates itself af-
ter activating an appropriate proxy on a different compute
node. Therefore, only one proxy-agent is active at any given
time and consequently this strategy is called Single Active
Proxy (SAP) approach.

An simplifed pseudo code for the SAP approach is shown
in Algorithm 1. Initially, one deactivated proxy agent is au-
tomatically created on each PDES-process for every mobile
agent in a given model. Deactivated agents do not per-

Persistence Module

(XML−based)

Eco−description

(Final model)

Factory
Proxy

Factory
Proxy

S
i

m
u
l
a

i
t

o
n

Gateway
Session

Manager
Agent

Factory

Communication Subsystem

WESE Factory

WESE Factory

Graphical

Model Editor

Visualization

Subsystem

Partitioner

Simulation Manager

Customizer
Agent

Factory
Editor

Factory
Checker

Factory Manager

Existing System (Java) New Interface (Java)
Newly developed subsystem
for parallel simulation (C++)

Geographic Statistical

Migratory

Repository
Agent

Skeleton

Figure 4: Architectural overview of SEARUMS showing core software subsystems.

@t2

2

3
4

5

6

7

Note: Px,n denotes proxy-agent n for agent x.
There is one EcoArea per PDES-process. In SAP mode, proxy agents
are activated/deactivated when the center of an agent moves into a
different Eco Area.

@t0@t1

P1,1

1

P1,1

1
1

P1,2

EcoArea #2 EcoArea #1 EcoArea #0

Figure 6: Overview of Single Active Proxy (SAP)
approach (with 3 EcoAreas on 3 PDES-processes)

form any operations and remain dormant in the simulation.
However, based on the initial geographical location of an
agent, the appropriate proxy activates itself and performs
the normal operations of the agent. When the agent mi-
grates across its local EcoArea, the active proxy first deacti-
vates itself logically removing itself from the simulation. The
proxy then schedules an activation event (which includes the
current state) to the appropriate proxy object on a differ-
ent EcoArea. For example when agent #1 in Figure 6 moves
from EcoArea #0 to EcoArea #1 proxy agent P1,0 deactivates
itself while activating proxy agent P1,1. The activated proxy
then resumes life cycle activities for the agent and as a con-
sequence, the SAP approach essentially accomplishes logical
(rather than physical [16]) process migration.

The dormant proxies have an extra role of forwarding
events (as they may already be scheduled) to the active
proxy. Activation, deactivation, and forwarding of events
are performed using sub-simulation cycles. Specifically, sim-
ulation time is defined as a double precision value and frac-
tional times are used to represent subcycles. Consequently,
the overall resulting state of various agents is identical with
the base case (without SAP). Moreover, tools for post-simulation
analysis of simulation logs ignore the subcycles. Conse-
quently, the filtered simulation logs used for various analysis
are identical in all cases.

6. BOUNDARY CASES IN SAP
The Single Active Proxy (SAP) approach provided signif-

icant improvement in scalability and performance over the
base case as discussed in Section 9. However, the simula-
tions continued to experience some performance degradation
as the number of mobile agents in the model increased. Ex-
perimental analysis indicated that the SAP approach still
experienced increased inter-process messages and rollbacks
when an agent spans two or more partitions, as enumerated
in the following three different Boundary Cases (BCs):

1. BC #1: The first case occurs when agents transi-
tioning from one EcoArea to another across PDES-
prosess boundaries as illustrated for agent #1 in Fig-
ure 7. In this transitional period only one proxy is
active in SAP and has to interact with agents in two
different PDES-processes resulting in increased Inter-
Process Messages (IPMs) and degrades performance in
models with many mobile agents.

2. BC #2: The second case occurs when a mobile agent
is resting but happens to spans across two EcoAreas

Algorithm 1: Single Active Proxy (SAP) Approach

1 begin initialization(state)
2 if inLocalEcoArea(state->latitude,

state->longitude) then
3 state->isActive = true;
4 registerWithEcoArea();
5 scheduleLifeCycleEvents();

6 else
7 state->isActive = false;
8 end if

9 end initialization
10 begin processEvent(state, event)
11 if state->isActive then
12 proessEvent(event);
13 if ! inLocalEcoArea(state->latitude,

state->longitude) then
14 state->activeProxy =

unregisterFromEcoArea();
15 activateProxy(state, state->activeProxy);
16 state->isActive = false;

17 end if

18 else
19 if isProxyEvent(event) then
20 activate();
21 state->isActive = true;

22 else
23 rescheduleEvent(state->activeProxy,

event->recvTime + DELTA);

24 end if

25 end if

26 end processEvent

as illustrated by the set of agents {#6, #7, #8} in
Figure 7. Since agents span two or more EcoAreas, it
gives raise to copious amounts of Inter-Process Mes-
sages (IPMs) which results in degraded performance.
The frequency of this scenario steadily increases as the
number of EcoAreas or partitions increases. This issue
conspicuously manifests itself even without SAP (as
expected) as highlighted by the chart in Figure 3(a).

3. BC #3: The third BC occurs when an agent’s move-
ment oscillates between two or more partitions, similar
to the pathway of agent #9 shown in Figure 7. In this
scenario, proxy agents often experience cascading roll-
backs which degrades performance.

BC #2 6 78

EcoArea #2
(On PDES-Process #2)

9

BC
 #

3

180o E to 120o E 120o E to 120o W 120o W to 180o E

90
o S

to
 9

0o N

BC #1

2

3
4

5

EcoArea #0
(On PDES-Process #0)

EcoArea #1
(On PDES-Process #1)

P1,1

1

P1,1

1

Figure 7: Illustration of three Boundary Cases
(BCs) that impact SAP approach

7. MULTIPLE ACTIVE PROXY (MAP)
The Multiple Active Proxy (MAP) approach is proposed

to extend SAP approach and address the three boundary
cases (BCs) discussed in Section 6 to provide a more com-
prehensive solution. The MAP approach extends the SAP
approach by permitting multiple proxies to be active at the
boundary cases when an agent spans two or more partitions.
Recollect that an agent has one proxy preallocated on each
EcoArea (i.e., PDES-process). Consequently, in MAP ap-
proach two or more proxies can be active when boundary
cases arise. The pseudo code in Algorithm 2 provides addi-
tional details about the MAP implementation.

In MAP approach, each active proxy “ghosts” operations
of related proxies and handles interactions with other agents
on its local partition, thereby eliminating Inter-Process Mes-
sages (SAP) that occur at boundary cases in SAP mode.
Moreover, each proxy agent also performs various life cycle
tasks by scheduling events to itself. Ghosting of life cycle
tasks by active procexies does increase the net number of
events in the simulation. However, these events are local
events that do not significantly degrade performance.

At the end of handling local interactions, the active prox-
ies exchange messages (which are inter-process messages) to
consistently update the states of all active proxies. Once the
agent no longer spans multiple partitions, relevant proxies
deactive themselves eliminating “ghosting” and the simula-
tion continues to proceed in SAP mode. MAP minimizes
the number of Inter-Process Messages (IPMs) at boundary
cases thereby improving upon the efficiency gained by uti-
lizing SAP. In this context, it must be noted that the final
resulting state in both MAP and SAP approaches is the
same as that of the original agent’s state. Consequently, the
results from the simulations used for various analysis are
identical in all cases.

8. RELATED RESEARCH
The proposed research is a novel integration several ma-

jor topics in of Modeling and Simulation (M&S), includ-
ing: agent-based epidemic modeling, spatially-explicit mod-
els, and optimistic PDES. Several investigations have been
reported on these topics and this section compares the pro-
posed research with some of the closely related investiga-
tions. Readers are referred to the references and literature
for a more comprehensive survey of related works [23, 22].

Agent-based models (ABMs) have been employed for large-
scale epidemiological analyses for various diseases [6, 15].

Algorithm 2: Multiple Active Proxy (MAP) Approach

1 begin initialization(state)
2 ecoAreas=ecoAreas(state->latitude,

state->longitude);
3 if localEcoArea ∈ ecoAreas then
4 state->isActive = true;
5 registerWithEcoArea();
6 scheduleLifeCycleEvents();

7 else
8 state->isActive = false;
9 end if

10 end initialization
11 begin processEvent(state, event)
12 if state->isActive then
13 prevEcoAreas=ecoAreas(state->latitude,

state->longitude);
14 proessEvent(event);
15 if ! inLocalEcoArea(state->latitude,

state->longitude) then
16 state->activeProxy =

unregisterFromEcoArea();
17 state->isActive = false;

18 else
19 newEcoAreas=ecoAreas(state->latitude,

state->longitude) - prevEcoAreas;
20 if newEcoAreas != φ then
21 activeProxies(newEcoAreas);
22 end if

23 end if
// Synchronize active proxy states

24 activeProxyStateCoherence();

25 else
26 if isProxyEvent(event) then
27 activate();
28 state->isactive = true;

29 else
30 rescheduleEvent(state->activeProxy,

event->recvTime + DELTA);

31 end if

32 end if

33 end processEvent

Parker and Epstien [15] discusses the issues involved in de-
sign and development of a Java-based, Global-Scale Agent
Model (GSAM) distributed platform for epidemiological mod-
eling using over 6 billion interacting agents. Similar to
GSAM, the proposed research avoids “physical” process mi-
gration but unlike GSAM the proposed research involves
“logical” process migration using proxy agents. However,
in contrast to agents in GSAM, the mobile agents in our
model explicitly embody migration and inter-agent interac-
tions without relying on contact matrices or contact net-
works [15]. Moreover, the agents in our research are dif-
ferent in that they do not represent a single entity but a
collection of collocated entities, striking a better balance be-
tween model resolution and execution costs. Our modeling
approach is useful for M&S of 21 billion migrating water-
fowl using surveillance and satellite telemetry data for that
is available only aggregate forms [11].

The use of ABMs with explicit agent mobility distinguishes
the proposed research from work from those reported by
Barrett et al [1], Bisset et al [2], and Perumalla et al [17].
These three investigations use a reaction-diffusion approach
involving contact graphs for epidemic modeling. The use
of contact graphs or social networks for epidemic modeling
has been discussed by other researchers as well [8, 14, 12].
Although, the migratory flyways for waterfowl are specified
in our models, the contacts between agents are not preor-
dained but discovered based on probabilistic movements of
agents. However, similar to these three investigations we
aim to utilize PDES to accelerate performance of epidemic
simulations.

The proposed Single Active Proxy (SAP) and Multiple
Active Proxies (MAP) approach discussed in Section 5 and
Section 7 essentially accomplishes logical process migrations
in contrast to physical process migration that has been ex-
tensively investigated in conservative as well as optimistic
PDES [13, 16]. However, unlike the application-specific, log-
ical migration accomplished by SAP, almost all of the efforts
reported in the literature focus on providing a generic in-
frastructure for physical process migration. Consequently,
the earlier investigations involve extensions to the under-
lying simulation kernel. On the other hand, the proposed
investigations focus on model-level extensions that can be
applied to both conservative and optimistic PDES. Never-
theless, both of these approaches are distantly related to
“ghosting” in multi-resolution simulations in which multi-
ple representations of entities are maintained [26]. However,
MAP approach is different then concept of“ghosting” in that
the agents are not at different resolutions and in fact strive
to be identical copies of each other.

9. EXPERIMENTS
The experiments conducted to evaluate the effectiveness

of the Single Active Proxy (SAP) and Multiple Active Prox-
ies (MAP) mode were performed using four different models.
Table 1 shows the number of agents constituting each mod-
els. Waterfowl agents indicate the number of mobile entities
while Poultry and Human agents are stationary. The migra-
tory flyways of the waterfowl and their population has been
generated from GROMS database [11] [22, 11] and validated
using statistical and bioinformatics analysis [22, 20].

The models M1, M2, and M3 have a varying number of hu-
mans and poultry agents at different scales of detail. Agent
data at were generated from poultry and human Geographic
Information Systems (GIS) data obtained from NASA’s SEDAC
database [25]. Unlike the first three models in Table 1, model
M4 serves as a stress-test case in which all agents are mobile.

All the experiments were conducted on a distributed mem-
ory super computing cluster running Red Hat Enterprise
Linux (RHEL 6.5). Each compute node had two hex-core
Intel Xeon X5650 CPUs @ 2.67 GHz (with 12 MB L2 cache)
yielding 5333 bogomips on each of the 12 cores. Each com-
pute node had 48 GB of RAM averaging to 4 GB per core.
The nodes were interconnected using QDR infiniband inter-
connect. Note that the experiments were performed using
the non-GUI mode supported by SEARUMS to avoid GUI
overheads. Furthermore, the Java frontend was executed on
a separate compute node and model-logs were turned off to
eliminate any resource contentions or I/O overheads for all
performance tests reported in this section.

Table 1: Characteristics of models used for conduct-
ing the experiments

ID Number of Agents Total
Waterfowl Poultry Humans

(mobile) (stationary) (stationary)

M1 44 1314 1314 2672
M2 44 4251 2160 6455
M3 44 4763 5269 10076
M4 3088 0 0 3088

9.1 Calibration
The objective of the first phase of experimentation was

to identify the optimal simulation configuration for the base
case with did not utilize the SAP or MAP optimization.
The objective was to identify suitable settings to obtain the
best possible performance for base case comparisons. The
medium sized model M2 was used for these experiments. For
all of the tests the surface of Earth was vertically partitioned
because most migratory flyways are in North-South direc-
tion. Consequently, vertical partitioning minimizes inter-
process messages even in the base case. Effects of different
strategies for partitioning this model have been reported in
our earlier publication [21]. The number of EcoAreas cor-
respond to the number of processes used for PDES with
one EcoArea assigned to each PDES-process. Furthermore,
each EcoArea handles agents in an evenly divided, non-
overlapping vertical region of Earth’s surface.

The charts in Figure 8 illustrate the effect of three Time
Warp parameters that influence overall performance of the
simulations [21]. The calibration experiments enable iden-
tification of suitable settings for these three parameters for
a given computational platform and minimize noise in the
experimental data. The graph in Figure 8(a) illustrates the
effect of changing the maximum delay between successive
checks for Inter-process Messages (IPM) arriving over the
network. Consistent with expectations, neither small nor
large settings are effective with ideal value lying at the in-
flection point of the characteristic curve.

The need for controlling optimism is pervasive to spatially-
explicit, optimistic simulations running on both shared and
distributed memory architectures [4, 7, 21]. The chart in
Figure 8(b) illustrates the effect of varying the time win-
dow used for throttling. Small time windows curtail opti-
mism too aggressively and consequently the PDES cannot
use available optimism effectively. Consequently, a signifi-
cant variation in runtimes is observed because the simulation
becomes network-bound, waiting for messages to arrive. On
the other hand, when the time window is large the simu-
lation experiences more overheads due to rollbacks which
degrade performance. Accordingly, an intermediate value of
144 hours (in simulation-time units) corresponding to the
minimum variance point has been used.

The Global Virtual Time (GVT) computation delay pa-
rameter had the least impact on the simulation as shown in
Figure 8(c). The impact of GVT period is not pronounced
because the compute nodes have large caches and RAM.
However, as expected, the variance in timings increases for
small and large GVT values. Therefore a intermediate value
of 4000 events has been used for experimentation. The
charts in Figure 8 indicate that the PDES is most sensitive
to polling delay and least sensitive to GVT delay.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000 1200 1400

S
im

u
la

ti
o
n

 r
u

n
ti

m
e
 (

s
e
c
o
n

d
s
)

Maximum Poll Delay (events)

Impact of polling frequency on Runtime

In all charts, the shaded area tracks the
95% confidence interval indicated by
vertical bars at each data point from the
observations summarized by box plots.

Average runtime (sec)
Average runtime (approx)

(a) Calibration of Polling delay

 50

 100

 150

 200

 250

 1 10 100 1000 10000

S
im

u
la

ti
o
n

 r
u

n
ti

m
e
 (

s
e
c
o
n

d
s
)

Virtual-Time Window (log scale)

Imact of time window (throttle optimism) on Runtime

In all charts, the shaded area tracks the
95% confidence interval indicated by
vertical bars at each data point from the
observations summarized by box plots.

Average runtime (sec)
Average runtime (approx)

(b) Calibration of Time Window

 60

 65

 70

 75

 80

 85

 10 100 1000 10000

S
im

u
la

ti
o
n

 r
u

n
ti

m
e
 (

s
e
c
o
n

d
s
)

GVT delay (# processed events)

Imact of GVT calculation delay on Runtime

Log scale

Average runtime (sec)
Average runtime (approx)

(c) Calibration of GVT duration

Figure 8: Experimental calibration (without pro-
posed solution) of influential parameters to identify
optimal settings for base case measurements. The
tests were conducted using 12 PDES-processes (on
4 compute nodes, 3 processes per node)

9.2 Experimental Evaluation of SAP & MAP
The influential parameter settings identified via the cali-

bration discussed in Section 9.1 were used to conduct all the
experiments for evaluating the proposed Single Active Proxy
(SAP) and Multiple Active Proxy (MAP) modes. The obser-
vations collated from experiments conducted using a range
of configurations with for different models (see Table 1) are
shown by the charts in Figure 9 and Figure 10. The x-axis of
all the charts corresponds to the number of parallel PDES-
processes (i.e., Linux processes), with each process running

on an independent core. The solid lines on each one of the
charts tracks average values obtained from 10 runs. The cor-
responding dotted lines show the approximate curve fitting
for the observations to emphasize general trends in the data
due to the occurrence of Boundary Cases (BCs) as discussed
in Section 6. The error bar at each of the data points indi-
cates the 95% confidence interval computed from the 10 runs
and the lightly shaded region tracks the confidence interval
to highlight statistical significance of the observations.

In all the charts in Figure 9 and Figure 10, the base case

configuration corresponds to simulations conducted without
the use of proxies. However, the base case curves are not in-
cluded in the charts for model M4 because the configuration
without proxies was practically unusable due to long simula-
tion execution times (over 24 hours with over 32 cores) and
the experiments had to be abandoned. The long simulation
execution times arise because of the large number of mobile
agents in the model. Note that, although model M4 has fewer
total number of agents than even M2 model, all of its agents
are mobile waterfowl agents. Consequently, model M4 is a
“worst case” model for simulating with the base case con-
figuration (i.e., without proxies) resulting in long execution
times.

The charts for model M1 in Figure 9 already highlight the
effectiveness of the Single Active Proxy (SAP) and Mul-
tiple Active Proxies (MAP) approaches. However, for M1

both the SAP and MAP approaches are pretty close in run-
time for most configurations, with the MAP approach per-
forming about 10% to 15% better. The small difference is
expected because the MAP approach operates as SAP ex-
cept for boundary cases. Furthermore, the M1 model is the
smallest and lacks sufficient workload to effectively utilize
the available compute power. Consequently, even with SAP
and MAP the number of rollbacks offset advantages of PDES
and the time for simulation actually increases.

The graphs for model M2 in Figure 9 and model M3 in Fig-
ure 10 illustrate the advantages of SAP and MAP approach.
Furthermore, the advantages of MAP is a bit more promi-
nent in these two models. The SAP approach consistently
outperforms the the base case by about 2x while the MAP
approach provides another 15% to 25% performance boost
on top of SAP. In these two models the overall effect of MAP
is still muted because the models do not have many mobile
agents in them. Nevertheless, the advantages of MAP are a
bit more prominent as the number of PDES-processes (syn-
onymous to number of cores used for PDES) are increased.
The MAP approach provides much better scalability that
SAP for both M2 and M3 models. On the other hand, the
SAP approach starts experiencing degradation in scalability
around 20 cores and 40 cores for models M2 and M4 respec-
tively. The degradation in scalability occurs sooner for M2

than for M3 because M2 is a smaller model with less work-
load and with increased availability of compute power the
model optimistically advances only to suffer from increased
rollbacks, as evidenced by the charts in Figure 9.

The advantages of MAP approach is more pronounced
in the case of model M4 that has a large number of mo-
bile agents. The abundance of mobile agents increases the
chances of Boundary Cases (BCs) discussed in Section 6 in
SAP as the number of PDES-processes are increased. The
approximated runtime curve for M4 shown in Figure 10 shows
that initially the runtime decreases with increase in PDES-
processes demonstrating good scalability. However, the scal-

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 0 10 20 30 40 50 60

In
te

r-
P

ro
c
e
s
s
 M

e
s
s
a
g

e
s

Number of of PDES-processes (same as #cores)

Model M1 Inter-Process Message Comparison

Base Case (No proxies) runtime (sec)
Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Inter-Process Messages (IPM)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

ro
ll
b

a
c
k
s

Number of of PDES-processes (same as #cores)

Model M1 Rollbacks Comparison

Base Case (No proxies) runtime (sec)
Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Rollbacks

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60

S
im

u
la

ti
o
n

 r
u

n
ti

m
e
 (

s
e
c
o
n

d
s
)

Number of of PDES-processes (same as #cores)

Model M1 Execution time comparison

Base Case (No proxies) runtime (sec)
Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Simulation Time

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 0 10 20 30 40 50 60

In
te

r-
P

ro
c
e
s
s
 M

e
s
s
a
g

e
s

Number of of PDES-processes (same as #cores)

Model M2 Inter-Process Message Comparison

Base Case (No proxies) runtime (sec)
Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Inter-Process Messages (IPM)

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

ro
ll
b

a
c
k
s

Number of of PDES-processes (same as #cores)

Model M2 Rollbacks Comparison

Base Case (No proxies) runtime (sec)
Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Rollbacks

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60

S
im

u
la

ti
o
n

 r
u

n
ti

m
e
 (

s
e
c
o
n

d
s
)

Number of of PDES-processes (same as #cores)

Model M2 Execution time comparison

Base Case (No proxies) runtime (sec)
Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Simulation Time

Figure 9: Comparison of Inter-Process Messages (IPM), rollbacks, and simulation execution time for the
models M1 and M2 shown in Table 1 in the following three configurations: no proxies (base case), Single Active
Proxy (SAP) approach, and Multiple Active Proxies (MAP) approach. Note that number of PDES-processes
is the same as the number of CPU-cores used for simulation (one PDES-process per CPU-core).

ability tappers off around 40 cores and further increase in
PDES-processes worsens the runtime. However, the MAP
approach continues to provide much better scalability and
about 20% to 25% performance improvement in the con-
figurations with more than 25 PDES processes. Reprising
the discussion from earlier paragraph, the base case data for
model M4 are not shown in in Figure 10 as the experiments
were abandoned due to extremely long simulation times that
exceeded 24 hours in several configurations.

The experimental results shown in Figure 9 and Figure 10
also illustrate the strong correlation between Inter-Process
Messages (IPMs), the number of rollbacks, and simulation
execution time. Increase in rollbacks transitively degrades
scalability of the PDES. However, the SAP approach is ef-
fective in eliminating a large fraction of IMPs by essentially
accomplishing logical process migration using a set of prox-
ies. Furthermore, the MAP approach improves upon SAP
by further reducing IPMs and consequently providing more
reliable scalability.

10. CONCLUSIONS
The application of simulation-based analysis using spatially-

explicit, agent-based models is gaining momentum for epi-
demiological analysis of emergent diseases such as avian in-
fluenza [24, 18, 27]. We have developed a modeling, parallel
simulation, and analysis environment called SEARUMS to
meet the computational demands of agent-based models. In
SEARUMS, Parallel Discrete Event Simulation (PDES) is
accomplished by partitioning various agents and the geospa-
tial components used to coordinate interactions between them.
The PDES uses Time Warp algorithm for optimistic syn-
chronization to effectively utilize inherent parallelism in the
model [21] and operated well for models with many station-
ary agents but few mobile agents.

However, the optimistically synchronized PDES backend
of SEARUMS experienced performance degradation when
the number of mobile agents in the model were increased.
The investigation reported in this paper focused on identify-
ing and addressing the scalability and ensuing performance
degradation. Exploratory investigations (presented in Sec-
tion 1.1) identified that the large volume of Inter-Process
Messages (IPMs) exchanged over the network was magnify-
ing synchronization issues resulting in degraded scalability.
The IPMs arise because as the mobile agents logically move
they have to interact with agents on a different compute
node causing increase in volume of IPMs.

The investigations proposed and assessed the effectiveness
of using proxy agents on each PDES-process for each agent.
Specifically, as an agent migrates across process boundaries,
a proxy deactivates while activating another proxy on a dif-
ferent process. Initially, only one proxy was permitted to be
active at any given time resulting in a Single Active Proxy
(SAP) approach. The SAP approach provided significant
performance improvements as indicated by the experimental
results discussed in Section 9. However, the SAP approach
did not address bottlenecks arising due to three different
Boundary Cases (BCs) as discussed in Section 6. Conse-
quently, a Multiple Active Proxy (MAP) approach was pro-
posed and assessed.

The Multiple Active Proxy (MAP) approach extends SAP
approach and permits multiple proxy agents to be active
only in boundary case scenarios while operating in SAP
mode otherwise. The MAP mode essentially permits“ghost-
ing” of an agent where multiple active proxies handle local
interactions occurring on the same PDES-process and us-
ing Inter-Process Messages (IPMS) to maintain consistent
states. Experimental evaluation of the MAP approach dis-
cussed in Section 9 indicates that the MAP approach pro-

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 0 10 20 30 40 50 60

In
te

r-
P

ro
c
e
s
s
 M

e
s
s
a
g

e
s

Number of of PDES-processes (same as #cores)

Model M3 Inter-Process Message Comparison

Base Case (No proxies) runtime (sec)
Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Inter-Process Messages (IPM)

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

ro
ll
b

a
c
k
s

Number of of PDES-processes (same as #cores)

Model M3 Rollbacks Comparison

Base Case (No proxies) runtime (sec)
Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Rollbacks

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 10 20 30 40 50 60

S
im

u
la

ti
o
n

 r
u

n
ti

m
e
 (

s
e
c
o
n

d
s
)

Number of of PDES-processes (same as #cores)

Model M3 Execution time comparison

Base Case (No proxies) runtime (sec)
Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Simulation Time

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 0 10 20 30 40 50 60

In
te

r-
P

ro
c
e
s
s
 M

e
s
s
a
g

e
s

Number of of PDES-processes (same as #cores)

Model M4 Inter-Process Message Comparison

Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Inter-Process Messages (IPM)

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 5e+09

 0 10 20 30 40 50 60

N
u

m
b

e
r

o
f

ro
ll
b

a
c
k
s

Number of of PDES-processes (same as #cores)

Model M4 Rollbacks Comparison

Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Rollbacks

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60

S
im

u
la

ti
o
n

 r
u

n
ti

m
e
 (

s
e
c
o
n

d
s
)

Number of of PDES-processes (same as #cores)

Model M4 Execution time comparison

Single Proxy: Average runtime (sec)
Multi Proxy: Average runtime (sec)

Simulation Time

Figure 10: Comparison of Inter-Process Messages (IPM), rollbacks, and simulation execution time for the
models M3 and M4 shown in Table 1 in the following three configurations: no proxies (base case), Single Active
Proxy (SAP) approach, and Multiple Active Proxies (MAP) approach. Note that number of PDES-processes
is the same as the number of CPU-cores used for simulation (one PDES-process per CPU-core).

vides more reliable scalability along with a modest perfor-
mance boost of 15% to 25% on top of SAP.

The SAP and MAP approaches are implemented at the
model-level using the default infrastructure provided by the
PDES kernel. Since the proposed solutions do not depend on
any special support from the underlying PDES kernel, they
can be readily implemented in any infrastructure, including
conservatively synchronized parallel simulations. Neverthe-
less, the MAP approach involving “ghosting” can be incor-
porated as general-purpose infrastructure in PDES kernels.
The optimized PDES significantly reduces simulation execu-
tion times, easing exploratory analyses, and highlights the
current and future importance of parallel simulations in epi-
demiology, bionomics, and related fields.

11. REFERENCES
[1] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng,

and M. V. Marathe. Episimdemics: An efficient
algorithm for simulating the spread of infectious
disease over large realistic social networks. In
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, SC ’08, pages 37:1–37:12, Piscataway,
NJ, USA, 2008. IEEE Press.

[2] K. R. Bisset, J. Chen, X. Feng, V. A. Kumar, and
M. V. Marathe. Epifast: A fast algorithm for large
scale realistic epidemic simulations on distributed
memory systems. In Proceedings of the 23rd
International Conference on Supercomputing, ICS ’09,
pages 430–439, New York, NY, USA, 2009. ACM.

[3] F. Brauer and C. Castillo-Chavez. Mathematical
Models for Communicable Diseases. SIAM, 3600
Market Street, Philadelphia, PA 19104-2688, USA,
2013.

[4] E. Deelman and B. K. Szymanski. Simulating spatially
explicit problems on high performance architectures.

Journal of Parallel and Distributed Computing,
62(3):446–467, Mar. 2002.

[5] T. Dickman, S. Gupta, and P. A. Wilsey. Event pool
structures for pdes on many-core beowulf clusters. In
Proceedings of the 2013 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation,
SIGSIM-PADS ’13, pages 103–114, New York, NY,
USA, 2013. ACM.

[6] J. M. Epstein. Modelling to contain pandemics.
Nature, 460:687–687, 2009.

[7] S. Eubank. Scalable, efficient epidemiological
simulation. In Proceedings of the 2002 ACM
symposium on Applied computing, pages 139–145,
Mar. 2002.

[8] N. M. Ferguson, D. A. T. Cummings, C. Fraser1, J. C.
Cajka, P. C. Cooley, and D. S. Burke. Strategies for
mitigating an influenza pandemic. Nature,
442:448–452, 2006.

[9] M. Gilbert, X. Xiao, J. Domenech, J. Lubroth,
V. Martin, and J. Slingenbergh. Anatidae migration in
the western palearctic and spread of highly pathogenic
avian influenza H5N1 virus. Emerging Infectious
Diseases, 12(11), 2006.

[10] GLiPHA. Global Livestock Production and Health
Atlas (GLiPHA): Animal Production and Health
Division of Food and Agriculture Organization of the
United Nations, 2014.

[11] GROMS. Global Register of Migratory Species
(GROMS): Summarising Knowledge about Migratory
Species for Conservation, Jul 2013.

[12] M. E. Halloran, N. M. Ferguson, S. Eubank, J. Ira
M. Longini, D. A. T. Cummings, B. Lewis, S. Xu,
C. FraserÂğ, A. Vullikanti, T. C. Germann,
D. Wagener, R. Beckman, K. Kadau, C. Barrett,

C. A. Macken, D. S. Burke, and P. Cooley. Modeling
targeted layered containment of an influenza pandemic
in the united states. Proceedings of the National
Academy of Sciences of the United States of America,
105(12):4639–4644, Mar. 2008.

[13] S. Jafer, Q. Liu, and G. Wainer. Synchronization
methods in parallel and distributed discrete-event
simulation. Simulation Modelling Practice and Theory,
30(0):54 – 73, 2013.

[14] I. M. Longini, A. Nizam, S. Xu, K. Ungchusak,
W. Hanshaoworakul, D. A. T. Cummunings, and
M. E. Halloran. Containing pandemic influenza at the
source. Sience, 309(5737):1083–1087, 2005.

[15] J. Parker and J. M. Epstein. A distributed platform
for global-scale agent-based models of disease
transmission. ACM Trans. Model. Comput. Simul.,
22(1):2:1–2:25, Dec. 2011.

[16] S. Peluso, D. Didona, and F. Quaglia. Supports for
transparent object-migration in pdes systems. Journal
of Simulation, 6:279–293, 2012.

[17] K. S. Perumalla and S. K. Seal. Discrete event
modeling and massively parallel execution of epidemic
outbreak phenomena. SIMULATION, 2012.

[18] L. L. Pullum and O. Ozmen. Early results from
metamorphic testing of epidemiological models. In
BioMedical Computing (BioMedCom), 2012
ASE/IEEE International Conference on, pages 62–67,
2012.

[19] D. M. Rao. Study of Dynamic Component
Substitution. PhD thesis, University of Cincinnati,
2003.

[20] D. M. Rao. Enhancing temporo-geospatial
epidemiological analysis of h5n1 influenza using
phylogeography. In Proceedings of the Great Lakes
Bioinformatics Conference 2014 (GLBIO’14),
University of Cincinnati, Ohio, USA, May 2014.
International Society for Computational Biology
(ISCB). (submitted).

[21] D. M. Rao and A. Chernyakhovsky. Parallel
simulation of the global epidemiology of avian
influenza. In Proceedings of the 2008 Winter
Simulation Conference, pages 1583–1591, Dec. 2008.

[22] D. M. Rao and A. Chernyakhovsky. Automatic
generation of global agent-based model of migratory
waterfowl for epidemiological analysis. In Proceedings
of the 27th European Simulation and Modelling
Conference (ESM’2013), Lancaster University,
Lancaster, UK, oct 2013. EuroSis. Best paper award.

[23] D. M. Rao, A. Chernyakhovsky, and V. Rao. Modeling
and analysis of global epidemiology of avian influenza.
Environmental Modelling & Software, 24(1):124–134,
jan 2009.

[24] B. Roche, J. Drake, and P. Rohani. An agent-based
model to study the epidemiological and evolutionary
dynamics of influenza viruses. BMC Bioinformatics,
12(1):87, 2011.

[25] SEDAC. SocioEconomic Data and Applications Center
(SEDAC): Gridded Population of the World, Oct 2014.

[26] A. Tolk. Engineering Principles of Combat Modeling
and Distributed Simulation. Wiley, 2012.

[27] E. M. Volz, K. Koelle, and T. Bedford. Viral
phylodynamics. PLoS Computational Biology,
9(3):e1002947, 2013.

[28] WHO. Influenza (seasonal) fact sheet, Feb. 2014.
Citations for 90 million annual infections and 500,000
annual deaths.

	Introduction
	Motivation: Scalability Problems
	Solution Overview & Paper Outline

	SEARUMS: M&S Environment
	Background: Epidemic Models
	Models in SEARUMS
	Model Generation and Validation

	Single Active Proxy (SAP)
	Boundary Cases in SAP
	Multiple Active Proxy (MAP)
	Related Research
	Experiments
	Calibration
	Experimental Evaluation of SAP & MAP

	Conclusions
	References

