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ABSTRACT

The choice of data structure for managing and processing
pending events in timestamp priority order plays a critical
role in achieving good performance of sequential and parallel
Discrete Event Simulation (DES). Accordingly, we propose
and evaluate the effectiveness of our novel multi-tiered (2 and
3 tier) data structures and our 2-tier Ladder Queue, for both
sequential and optimistic parallel simulations, on distributed
memory platforms. Our assessments use (a fine-tuned version
of) the Ladder Queue, which has shown to outperform many
other data structures for DES. The experimental results based
on 2,500 configurations of PHOLD benchmark show that our
3-tier heap and 2-tier ladder queue outperform the Ladder
Queue by 10% to 50% in simulations, particularly those
with higher concurrency per Logical Process (LP), in both
sequential and Time Warp synchronized parallel simulations.
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1 INTRODUCTION

Sequential and parallel DES are designed as a set of logical
processes (LPs) or “agents” that interact with each other
by exchanging and processing timestamped events or mes-
sages [6]. Events that are yet to be processed are called
“pending events”. Pending events must be processed by LPs
in priority order to maintain causality, with event priorities
being determined by their timestamps. Consequently, data
structures for managing and prioritizing pending events play
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a critical role in ensuring efficient sequential and parallel
simulations [3, 4, 7, 10]. Effectiveness of data structures for
event management is a conspicuous issue in larger simulations,
where thousands or millions of events can be pending [1, 9, 11].
Overheads in managing pending events is magnified in fine
grained simulations where the time taken to process an event
is very short – i.e., LPs use only few 100s to 1000s of instruc-
tions per event. Furthermore, the synchronization strategy
used in PDES, Time Warp in particular, can further im-
pact the effectiveness of the data structure due to additional
operations required for rollback-based recovery.

1.1 Motivation

Many investigations have explored the effectiveness of a wide
variety of data structures for managing the pending event set,
as discussed in Section 5. Among the various data structures,
the Ladder Queue proposed by Tang et al [11] has shown to
be the most effective data structure for managing pending
events [2, 3], particularly in sequential DES. Accordingly, we
aimed to replace the heap-based data structures (discussed
in Section 4) used in our Time Warp synchronized parallel
simulator with the Ladder Queue. Section 4.5 discusses our
Ladder Queue implementation and its fine-tuning.

The Ladder Queue outperformed our multi-tier heap-based
data structures in certain sequential simulations, consistent
with observations by other investigators [3, 11]. However, as
detailed in Section 6, the Ladder Queue was substantially
slower in two cases – ¶ high concurrency: larger number
of concurrent events (i.e., events with same timestamp) per
LP, and · Time Warp synchronized parallel simulations
conducted on a distributed memory computing cluster. Con-
versely, our multi-tier data structures performed well in par-
allel simulations.

To provide a good balance for both sequential and opti-
mistic parallel simulations, we propose a significant change
to the design of the Ladder Queue. Our revised data struc-
ture, discussed in Section 4.6, is called 2-tier Ladder Queue
(2tLadderQ). Various configurations of the standard PHOLD

benchmark are used to assess the effectiveness of the multi-
tier data structures vs. our fine-tuned implementation of the
Ladder Queue. Results from our experiments discussed in
Section 6 data shows 2tLadderQ provides comparable perfor-
mance in sequential simulations but outperforms the Ladder
Queue in optimistic parallel simulations. Our 3-tier heap
(3tHeap) outperforms our 2tLadderQ in high concurrency
scenarios.
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2 PARALLEL SIMULATOR OVERVIEW

The implementation and assessment of the different data
structures has been conducted using our parallel simulation
framework called MUSE. It has been developed in C++ and
uses the Message Passing Interface (MPI) library for paral-
lel processing. MUSE uses Time Warp and standard state
saving approach to accomplish optimistic synchronization
of the LPs. A conceptual overview of a parallel simulation
is shown in Figure 1. A MUSE simulation is organized as a
set of Logical Processes (LPs) that interact with each other
by exchanging virtual timestamped events. The simulation
kernel implements core functionality associated with LP reg-
istration, event processing, state saving, synchronization, and
Global Virtual Time (GVT) based garbage collection.

The kernel uses a centralized Least Timestamp First (LTSF)
scheduler queue for managing pending events and scheduling
event processing for local LPs. With a centralized LTSF
scheduler, event exchanges between local LPs do not cause
rollbacks. Only events received via MPI can cause rollbacks.
The scheduler is designed to permit different data structures
to be used for managing pending events. This feature is
used to experiment with the different pending event sched-
uler queues. A scheduler queue is required to implement the
following key operations to manage pending events:
¶ Enqueue one or more future events: This operation

adds the given set of events to the pending event set. Mul-
tiple events are added to reprocess events after a rollback.

· Peek next event: This operation returns the next event
to be processed. The event is used to update an LP’s LVT
and schedule it. Note that peek does not dequeue events.

¸ Dequeue events for next LP: In contrast to peek, this
operation dequeues concurrent events (i.e., events with the
same receive time) to be processed by an LP. Concurrent
events could have been sent by different LPs on different
MPI-processes. A total order within concurrent events is
not imposed but can be readily introduced if needed.

¹ Cancel pending events: This operation is used as part
of rollback recovery process to aggressively remove all
pending events sent by a given LP (LPsender) to another
LP (LPdest) at-or-after a given time (trollback). In our
implementation, only one anti-message with send time
trollback is dispatched to LPdest from LPsender to cancel
prior events sent by LPsender to LPdest at-or-after trollback.
This feature short circuits the need to send a large number
of anti-messages thereby enabling faster rollback recovery.
This feature also reduces scans required to cancel events
in Ladder Queue data structures discussed in Section 4.5
and Section 4.6.

2.1 Experimental Platform

The design of MUSE and the experiments reported in this
paper were conducted using a distributed-memory compute
cluster consisting of 80 compute nodes interconnected by
1 GBPS Ethernet. Each compute node has two quad-core
Intel Xeon ® CPUs (E5520) running at 2.27 GHz with
hyperthreading disabled. Each compute node has 32 GB
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Figure 1: Overview of a parallel MUSE simulation

of RAM (4 GB per core) in Non-Uniform Memory Access
(NUMA) configuration. The cluster has an independent 1
GBPS Ethernet network to support a shared file system.
The nodes run Red Hat Enterprise Linux 6, with Linux
(kernel ver 2.6.32) and the cluster runs PBS/Torque. The
simulation software was compiled using GCC version 4.9.2
(-O3 optimization level) with OpenMPI 1.6.4. All debug
assertions were turned off for maximum performance.

3 PHOLD BENCHMARK

The experimental analysis have been conducted using a par-
allelized version of the classic Hold synthetic benchmark
called PHOLD (see Section 7.1). It has been used by many
investigators because it has shown to effectively emulate the
steady-state phase of a typical simulation [3, 10]. Our PHOLD

implementation developed using MUSE provides several pa-
rameters (specified as command-line arguments) summarized
in Table 1. The benchmark consists of a 2-dimensional
toroidal grid of Logical Processes (LPs) specified via the
rows and cols parameters. The LPs are evenly partitioned
across the MPI-processes used for simulation. The imbalance
parameter influences the partition, with larger values skew-
ing the partition as shown in Figure 2(a). The imbalance

parameter has no impact in sequential simulations.

Table 1: Parameters in PHOLD benchmark

Parameter Description

rows Total number of rows in model.
cols Total number of columns in model.

#LPs = rows × cols

eventsPerLP Initial number of events per LP.
delay or λ Value used with distribution – Lambda

(λ) value for exponential distribution i.e.,
P (x) = λe−λx.

%selfEvents Fraction of events LPs send to self
granularity Additional compute load per event.
imbalance Fractional imbalance in partition to have

more LPs on a MPI-process.
simEndTime GVT when simulation logically ends.
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The PHOLD simulation commences with a fixed number
of events for each LP, specified by the eventsPerLP param-
eter. For each event received by an LP a fixed number of
trigonometric operations determined by granularity are
performed to place CPU load. The impact of increasing
the granularity parameter (no unit) is summarized in Fig-
ure 2(b) – smaller values result in finer grained simulations.
For each event, an LP schedules another event to a randomly
chosen adjacent LP. The selfEvents parameter controls the
fraction of events that an LP schedules to itself.

The event timestamps are determined by a given delay-

-distrib and delay or λ parameters. Our experiments use
an exponential distribution for timestamps, because it has
shown to reflect steady state event distribution commonly
found in a broad range of simulation models (but not all
models obviously) [10]. Timestamp of events is computed
as trecv = LVT + 1 + λe−λx, where the +1 ensures that
events are always scheduled into the future as per MUSE API
requirement discussed in Section 2. The impact of changing
the λ (i.e., delay) is shown in Figure 2(c) – smaller values of λ
provide a broader range of timestamp value for future events
resulting in fewer concurrent events per LVT. Conversely,
larger λ values cause timestamps to be close to the current
epoch, increasing both the number of concurrent events per
LVT and the possibility of rollbacks. Section 6 explores
impact of these parameters on scheduler queue performance
using 2,500 different configurations.

4 SCHEDULER QUEUES

The pending events are managed by different scheduler queues
that utilize different data structures to implement the key
operations discussed in Section 2, namely: enqueue, peek,
dequeue, and cancel. In this study we have compared the
effectiveness of 6 different non-intrusive queuing data struc-
tures (see Section 7.1 for link to source code) namely: ¬

binary heap (heap),  2-tier heap (2tHeap), ® 2-tier Fi-
bonacci heap (fibHeap), ¯ 3-tier heap (3tHeap), ° Ladder
Queue (ladderQ), and ± 2-tier Ladder Queue (2tLadderQ).
The queues are broadly classified into two categories, namely:
single-tier and multi-tier queues. Single-tier queues such as
heap use only a single data structure for accomplishing the 4
key operations. Conversely, multi-tier queues use organize
events into tiers, with each tier implemented using differ-
ent data structures. Table 2 summarizes the asymptotic
time complexities of the 6 data structures discussed in the
following subsections.

4.1 Binary Heap (heap)

The binary heap based (heap) is a commonly used data struc-
ture for implementing priority queues. It is a single-tier data
structure and is implemented using a conventional array-
based approach. A std::vector is used as the backing con-
tainer and C++11 algorithms (std::push heap, std::pop -

heap) are used to maintain the heap. The heap is prioritized
on both timestamp and LP’s ID (to dequeue batches of

events), with lowest timestamp at the root of the heap. Oper-
ations on the heap are logarithmic in time complexity – given
l LPs each with e events/LP, the time complexity of enqueue
and dequeue operations is O(log(l · e)) as shown in Table 2.
If event cancellation requires z events to be removed from the
heap, the time complexity is O(z · log(e · l)). Consequently,
for long or cascading rollbacks the cancellation costs is high.

Table 2: Comparison of asymptotic time complexi-
ties (i.e., Big O) of different data structures

Legend – l: #LPs, e: #events / LP, c: #concurrent events,
z: #canceled events, t2k: parameter, 1: amortized constant

Name Enqueue Dequeue Cancel

heap log(e · l) log(e · l) z · log(e · l)
2tHeap log(e · l)+ log(e)+ z · log(e)+

log(l) log(l)
fibHeap log(e) + 1 log(e) + 1 z · log(e) + 1
3tHeap log( e

c
) + log(l) log(l) e+ log(l)

ladderQ 1 1 e · l
2tLadderQ 1 1 e · l÷ t2k

4.2 Two-tier Heap (2tHeap)

The 2tHeap is designed to reduce the time complexity of
cancel operations by subdividing events into two distinct tiers
as shown in Figure 3. The first tier has containers for each
local LP on an MPI-process. Each of the tier-1 containers
contain a heap of events to be processed by a given LP.
In 2tHeap both tiers are maintained as independent binary
heaps. Consequently, given l LPs and e pending events per
LP, enqueue and dequeue operates require O(log e) time to
insert in tier-2 followed by O(log l) time to reschedule the
LP. Note that the tier-1 heap is updated only if the root
event in tier-2 changes after an operation. Consequently, the
best case time complexity becomes log e when compared to
O(log e · l) for the heap. Furthermore, cancellation of events
for an anti-message is restricted to just the tier-2 entries
of LPdest (see Section 2) with utmost 1 tier-1 operation to
update schedule position of LPdest. A std::vector is used
as the backing storage for both tiers and standard algorithms
are used to maintain the min-heap property for both tiers
after each operation.

4.3 2-tier Fibonacci Heap (fibHeap)

The fibHeap is an extension to the previous 2tHeap data
structure and uses a Fibonacci heap for scheduling LPs.
The Fibonacci heap is a slightly modified version from the
boost C++ library. The Fibonacci heap has an amortized
constant time for changing key values and finding minimum.
Consequently, we use it for the first tier which is responsible
for scheduling LPs and use a standard binary heap for the
second tier. We do not use Fibonacci heap for the second tier
because we found its runtime constants to be higher than a
binary heap. Accordingly, the time complexity for enqueue
and dequeue operations is O(log(e) + 1).
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Figure 2: Impact of varying key parameter values in the PHOLD model
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Figure 3: Structure of 2-tier & 3-tier heap

4.4 Three-tier Heap (3tHeap)

The 3tHeap builds upon 2tHeap by further subdividing the
second tier into two tiers as shown in Figure 3(b). The binary
heap implementation for the first tier that manages LPs for
scheduling has been retained from 2tHeap. However, the 2nd
tier is implemented as a list of containers sorted based on
receive time of events. Each tier-2 container has a 3rd tier
list of concurrent events. Assuming each LP has c concurrent
events on an average, there are e

c
tier-2 entries with each one

having c pending events. Inserting events in the 3tHeap is
accomplished via binary search at tier-2 with time complexity
O(log e

c
) followed by an append to tier-3, a constant time

operation. Enqueue to tier-2 is followed by an optional heap
fix-up of time complexity O(log l) as summarized in Table 2.
Dequeue operation for a LP removes a tier-2 entry in constant
time followed by a O(log l) heap fix-up for scheduling. Event
cancellation has time complexity of O(e+ log l) as it requires
inspecting each event in tier-3 followed by heap fix-up. As
an implementation optimization, we recycle tier-2 containers
to reduce allocation and deallocation overhead.

4.5 Ladder Queue (ladderQ)

The ladderQ is a priority queue implementation proposed
by Tang et al [10] with amortized constant time complex-
ity as summarized in Table 2. Several investigators have
independently verified that for sequential DES the ladderQ

outperforms other priority queues, including: simple sorted
list, binary heap, Splay tree, Calendar queue, and other
multi-list data structures [2, 3, 10]. There are two key ideas
underlying the Ladder Queue, namely: ¬ minimize the num-
ber of events to be sorted and  delay sorting of events as

much as possible. The multi-tier data structures also aim
to minimize the number of events to be sorted. However, in
contrast to the ladderQ, the other data structures always
fix-up and maintain a minimum heap property.

The ladder queue consists of the following 3 substructures:
(1) Top: An unsorted list which contains events scheduled

into the distant future or epoch.
(2) Ladder : Consists of multiple rungs, i.e., list of buckets.

Each bucket contains list of events with a finite range
of timestamp values. Hence, although events within a
bucket are not sorted, the buckets on a rung are organized
in a sorted order. The ladderQ minimizes the number of
events to be finally sorted by recursively breaking large
buckets into smaller buckets in lower rungs of its ladder.
Lower rungs in the ladder have smaller buckets with
smaller time ranges.

(3) Bottom: This substructure contains a sorted list of events
to be processed. Inserts into Bottom must preserve
sorted order. Hence, the ladderQ strives to maintain a
short bottom by moving events back into the ladder, as
needed [10].

4.5.1 Fine tuning Ladder Queue performance. Our imple-
mentation closely followed the design in the original paper
by Tang et al [10]. However, to minimize runtime constants,
we have explored different configurations for the buckets and
the Bottom in the ladderQ. Specifically, we have explored
the following 6 configurations – ¶ L.List-L.List: using a
doubly-linked list (L.List) implemented by std::list) for
buckets and bottom. Events are inserted into bottom via
linear search as proposed by Tang et al. · L.List-M.Set:
L.List for buckets and a Multi-set (O(logn) operations) for
bottom, ¸ L.List-Heap: a L.List and a binary heap (backed

by a std::vector) for bottom, ¹ Vec-M.Set: a dynamically
growing array (i.e., std::vector) for buckets and Multi-set
bottom, º Vec-Heap: Vector buckets and binary heap for
bottom, and » Vec-Vec: Vector for buckets and bottom. This
configuration enables using quick sort (i.e., std::sort) for
sorting buckets and binary search for inserting events into
bottom.

Runtime comparison of the 6 ladderQ configurations is
summarized in Figure 4. The data was obtained using PHOLD

with different parameter settings. The »th Vec-Vec configura-
tion was the fastest and performance of other configurations
are shown relative to it in Figure 4(a). The L.List-L.List
configuration was generally the slowest and performed 85×
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Figure 4: Comparison of execution time and peak
memory for PHOLD benchmark (different parameter
settings) using 6 different ladderQ configurations

(or ~98%) slower than the Vec-Vec configuration. The peak
memory used for simulations is shown in Figure 4(b), in
comparison with the Vec-Vec configuration. As shown by
the charts in Figure 4, the increased performance of Vec-Vec
comes at about a 6× increase in peak memory footprint when
compared to L.List-L.List configuration. This increased foot-
print arises because the std::vector internally doubles its
capacity as it grows. With many buckets in the ladderQ,
each implemented using a std::vector, the overall peak
memory footprint is higher. Certainly, the increased capacity
is used if the number of events in buckets grow. However, the
Vec-M.Set and Vec-Heap configurations consume a bit more
memory in some configurations, showing that Vec-Vec is not
the worst in memory consumption. Consequently, we use the
Vec-Vec configuration as it provides the fastest performance
among the 6 configurations (see Section 7.1).

The maximum number of rungs in the Ladder also in-
fluences the overall performance of the ladderQ [10]. The
chart in Figure 5 illustrates the impact of limiting the max-
imum number of rungs in the ladderQ. When the rungs
are too few, the timestamp-based width of buckets is larger
and more events with many different timestamps are packed
into buckets. This also causes the Bottom to be longer
with events spanning a broader range of timestamps. Con-
sequently, when inserts happen into Bottom, many Bottom-
to-Ladder re-bucketing operations are triggered to ensure
bottom is short. These re-bucketing operations with many
events significantly degrade performance. However, once suf-
ficient number of rungs (6 rungs in this case) are permitted
the events are better subdivide into smaller timestamp-based
bucket widths. Small bucket widths in turn minimize inserts
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into bottom and Bottom-to-Ladder operations, ensuring good
performance.

The chart in Figure 5 shows that a minimum of 6 rungs
is required. For some select configurations of larger models
we observed (data not shown) that 5 rungs would be suffi-
cient. However, the number of rungs cannot exceed beyond a
threshold to avoid infinite spawning of rungs [10]. Moreover,
it limits the overheads involved in re-bucketing events from
rung-to-rung [10]. Accordingly, based on the observations
in Figure 5, we decided to adopt a maximum of 8 rungs,
consistent with the threshold proposed by Tang et al [10].
Furthermore, we trigger Bottom-to-Ladder re-bucketing only
if the Bottom has events at different timestamps to further
reduce inefficiencies.

4.5.2 Shortcoming of Ladder Queue for optimistic PDES.
The amortized constant time complexity of enqueue and de-
queue operations enable the ladderQ to outperform other
data structures in sequential simulations [2, 3, 10]. However,
canceling events, requires a linear scan of pending events
because Top and buckets in rungs are not sorted. In prac-
tice, scans of Top, Ladder rung buckets, and Bottom can be
avoided based on cancellation times. Nevertheless, in a gen-
eral case, event cancellation time complexity is proportional
to the number of pending events – i.e., O(e · l) as summarized
in Table 2. This issue is exacerbated in large simulations
where thousands of events are typically present in Top and
buckets in various rungs.

In this context, it is important to recollect from Section 2
that – as an optimization, MUSE utilizes only one anti-message
to from LPsender to LPdest to cancel all n events sent after
trollback (rather than sending n individual anti-messages)
which reduces overheads. Furthermore, with our centralized
scheduler design, only events received from LPs on other MPI-
processes can trigger rollbacks. Consequently, the number
of scans of the ladderQ that actually occurr is significantly
fewer in our case, despite the aggressive cancellation strategy.

4.6 2-tier Ladder Queue (2tLadderQ)

A key shortcoming of the Ladder Queue for Time Warp
based optimistic PDES arises from the overhead of canceling
events used for rollback recovery. Our experiments (see
Section 6) show that event cancellation overhead of ladderQ
is a significant bottleneck in parallel simulation. On the other
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Figure 6: Structure of 2-tier Ladder Queue
(2tLadderQ) with 3 sub-buckets / bucket (i.e., t2k=3)

hand, our multi-tier data structures, where pending events
are more organized, performed well.

Consequently, to reduce cost of event cancellation, we
propose a 2-tier Ladder Queue (2tLadderQ) in which each
bucket in Top and Ladder is further subdivided into t2k
sub-buckets, where t2k is specified by the user. Figure 6
illustrates an overview of the 2tLadderQ with t2k = 3 sub-
buckets in each bucket. Given a bucket, a hash of the sending
LP’s ID (or the receiver LP ID, one or the other but not
both) is used to locate a sub-bucket into which the event
is appended. Currently, we use a straightforward LPsender

modulo t2k as the hash function. Consequently, enqueue
involves just 1 extra modulo instruction over regular ladderQ
and hence retains its amortized constant time complexity.
Similar to buckets, the sub-buckets are implemented using
standard std::vector with events added or removed only
from the end to ensure amortized constant-time operation.

The dequeue operations for a bucket require iterating over
each sub-bucket. However, for a small, fixed value of t2k, the
overhead becomes an ammortized constant. The constant
overhead is determined by the value of t2k. Consequently,
dequeue also retains the amortized constant characteristic
from regular ladderQ as summarized in Table 2. Currently,
we do not subdivide Bottom but leave it as a possible future
optimization (link to source code in Section 7.1).

4.7 Performance gain of 2tLadderQ

The primary performance gain for 2tLadderQ arises from the
reduced time complexity for event cancellation. Since each
bucket is sub-divided, only 1÷t2k fraction of events need to be
checked during cancellation. For example, if t2k=32, only 1

32

of the pending events are scanned during cancellation. This
significantly reduces the time constants in larger simulations
enabling rapid rollback recovery.

The value of t2k is a key parameter that influences the over-
all constants in 2tLadderQ. For sequential simulation, where
event cancellations do not occur, we recommend t2k=1. With
this setting the performance of 2tLadderQ is very close to
that of the regular ladderQ. However, in parallel simulation,
the value of t2k must be greater than 1 to realize benefits of
its design. Figure 7 shows the effect of changing the size of t2k
in a parallel simulation with 16 MPI processes. The total roll-
backs in the simulations were with 10% (except for t2k=512,

 0

 10

 20

 30

 40

 50

 60

 70

 1  4  16  32  64  128  256  512  1024 2048
 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

P
a

ra
ll

e
l 

ru
n

ti
m

e
 (

s
e

c
)

T
o

ta
l 

#
R

o
ll

b
a

c
k

s
(m

il
li

o
n

s
)

Value of 2tk (sub-buckets in 2tLadderQ)

Parallel
Sim.Time

#rollbacks
(millions)

Figure 7: Effect of varying t2k

which for this model experienced fewer rollbacks). Neverthe-
less, for t2k=1, the simulation has much higher runtime due
to event cancellation overheads. The runtime dramatically
decreases as t2k is increased. The runtime remains com-
parable for a broad range of values, namely: 64≤t2k<512.
However, for t2k≥512, we noticed slow increase in runtime
due to overhead of larger sub-buckets. Consequently, we have
used a value of t2k=128 for parallel simulation. We anticipate

t2k value to vary depending on the hardware configuration
of the compute cluster used for parallel simulation.

5 RELATED WORK

This paper proposes and explores multi-tier data structures
for managing the pending event set in sequential and opti-
mistic parallel simulations. Specifically, we compare effec-
tiveness of the data structures against our fine-tuned version
of the Ladder Queue [10] because it has shown to be very
efficient for sequential Discrete Event Simulation (DES). Re-
cently, Franceschini et al [3] compared several priority-queue
based event list data structures to evaluate their performance
in the context of sequential DEVS simulations. They found
that the Ladder Queue outperformed every other priority
queue based event lists data structure such as Sorted List,
Minimal List, Binary Heap, Splay Tree, and Calendar Queue.
We refer readers to the work by Tang et al [10] and Frances-
chini et al [3] for comparative discussion on the different data
structures. They both use the classic Hold benchmark used
in this study.

In contrast to earlier work, rather than using a linked list
based implementation, we propose alternative implementa-
tion using dynamically growing arrays (i.e., std::vector).
Furthermore, we trigger Bottom to Ladder re-bucketing only
if the Bottom has events at different timestamps to reduce in-
efficiencies. Our 2-tier Ladder Queue (2tLadderQ) is a novel
enhancement to the Ladder Queue to enable its efficient use
in optimistic parallel simulations.

Dickman et al [2] compare event list data structures that
consisted of Splay Tree, STL Multiset and Ladder Queue.
However, the focus of their paper was in developing a frame-
work for handling event list data structures in shared memory
PDES. A central component of their study was the identifi-
cation of an appropriate data structure and design for the
shared event list. Gupta et al [4] extended their imple-
mentation of Ladder Queue for shared memory Time Warp
based simulation environment, so that it supports lock-free
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access to events in the shared event lists. The modifica-
tion involved the use of an unsorted lock-free queue in the
underlying ladder queue structure. Quaglia [8] proposes a
Low-Overhead Constant-Time (LOCT) secheduler that uses
tree-like bitmaps which enables quick retrieval of events to be
scheduled in a Time Warp simulator. Quaglia’s experiments
on multithreaded, shared memory architecture shows that
the LOCT scheduler can outperform ladder queue, but the
ladder queue has better overall efficiency [8]. Marotta et al [7]
have contributed to the study of event list data structures
in threaded PDES through the design of the Non-Blocking
Priority Queue (NBPQ) data structure. An event list data
structure that is closely related to Calendar Queues with
constant time performance.

In contrast to aforementioned efforts, this paper focuses on
distributed memory platforms in which each parallel process
is single threaded. Consequently, our implementation does
not involve thread synchronization issues. However, our 2-tier
design has the ability to further reduce lock contention issues
in multithreaded environments and could provide further
performance boost. To the best of our knowledge, at the
time of this paper, the Fibonacci heap (fibHeap) and our
3-tier Heap (3tHeap) are unique data structures that have
potential to be effective in simulations with high concurrency.

6 EXPERIMENTS & DISCUSSIONS

Assessments of the effectiveness of the six scheduler queues
from Section 4 have been conduced using different config-
urations of the PHOLD benchmark discussed in Section 3.
The experiments were conducted on the distributed memory
compute cluster described in Section 2.1. Our initial experi-
mental analysis proved to be time consuming due to the large
number of PHOLD parameters (see Table 1) and combinations
of their values. Consequently, we pursued strategies to focus
on most influential PHOLD parameters that impacted rela-
tive performance of the scheduler queues using Generalized
Sensitivity Analysis (GSA) [5]. Section 6.1 discusses GSA
experiments used to reduce the PHOLD parameter space and
subsequent PHOLD configurations, called ph3, ph4, and ph5,
used for further experiments. Section 6.2 and Section 6.3
discuss the results from sequential and parallel simulations
conducted using ph3, ph4, and ph5.

6.1 Parameter reduction via GSA

Generalized Sensitivity Analysis (GSA) is based on two-
sample Kolmogorov-Smirnov Test (KS-Test) and yields a
dm,n statistic that is sensitive to differences in both cen-
tral tendency and differences in the distribution functions of
parameters [5]. The dm,n statistic is the maximum separa-
tion between cumulative probability distribution observed
in a two-sample KS-Test. The KS-Test is performed with
data from Monte Carlo simulations involving combinations of
parameter values from a specified range or probability distri-
bution. The simulation result is then classified into number
of “success” (m) or its converse “failure” (n) to compute
cumulative probability distribution and dm,n statistic for

each parameter. In this study we have defined “failure” to be
parameter values for which the 2tLadderQ runs slower when
compared to another scheduler queue. For sequential and
parallel simulations we use t2k=1 and t2k=128 respectively.

An important aspect of GSA is to ensure that the values
for each parameter covers its full range of values. Conse-
quently, we use Sobol random numbers to select a combina-
tion of PHOLD parameter values to be used for simulation.
Sobol random numbers are quasi-random low-discrepancy se-
quences that provide uniform coverage of a multidimensional
parameter space for PHOLD (see Figure 2). Our parameter
ranges also ensure that the peak memory consumption do
not cross NUMA threshold, which in our case is 4 GB of
RAM. Exceeding the 4 GB NUMA threshold introduces a
lot of variance in runtimes requiring many runs to reduce
variance to acceptable limits.

The randomly (using Sobol sequences) selected parameter
set is used to run the model using two different scheduler
queues. Average simulation execution time from 3 different
replications is recorded for each scheduler queue along with
the parameter-set. The process is repeated for 2,500 different
Sobol sequences. The 2,500 data set is then collectively
analyzed to compute the dm,n statistics for the different
parameters. The results from sequential and parallel GSA
are discussed in the following subsections.

6.1.1 GSA results for Sequential simulations. The charts in
Figure 8 shows the cumulative m, n, and the dm,n statistics
for the 9 different parameters explored using GSA for sequen-
tial simulations. The orange impulses show the parameter
values and number of samples used for Monte Carlo simula-
tion. Note that the distribution of samples varies depending
on the nature of the parameter – i.e.,, eventsPerLP varies
in discrete steps of 1 from 1–20 while imbalance varies from
0 to 1.0 in small fractional steps.

The chart in Figure 9 shows the summary of the dm,n
statistic or influence of each parameter (see Table 1) on the
outcome – i.e., 2tLadderQ performs better or worse than
3tHeap. The lightly shaded bands show the 95% Confidence
Intervals (CI) computed using standard bootstrap approach
using 5000 replications with 1000 samples in each. As ex-
pected, the imbalance (i.e., skew in partition) has no impact
in sequential simulation and has a low impact score of 0.037.
Similarly, the GVT computation rate does not impact pend-
ing events and consequently its influence is low at 0.051.

Interestingly, other model parameters such as rows, cols,
self-events, simEndTime, and granularity have no influ-
ence on relative performance of 2tLadderQ vs 3tHeap. The
parameter with most influence is eventsPerLP with a score
of 0.774. This parameter determines total number of con-
current events which influences bucket sizes and number of
rungs in 2tLadderQ as well as the third tier size in 3tHeap.
The parameter λ for exponential distribution has a marginal
influence because it influences number of concurrent events
as discussed in Section 3 and shown in Figure 2(c).

We have also conducted GSA to determine influential pa-
rameters impacting performance of other scheduler queues
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Figure 8: Results from Generalized Sensitivity Anal-
ysis (GSA) comparing 3tHeap and 2tLadderQ for se-
quential simulation (see Section 7.1 for more stats)
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Figure 9: Summary of influential parameters from
Figure 8 that cause performance differences between
2tLadderQ and 3tLadder in sequential simulations.

versus the 2tLadderQ in sequential simulations (charts via
link in Section 7.1). Our analysis showed that none of the
parameters play an influential role and the 2tLadderQ per-
formed consistently better or the same when compared to
ladderQ, 2tHeap, fibHeap, and heap. Only 3tHeap and in
few cases 2tHeap outperformed our 2tLadderQ in certain con-
figurations. The performance of ladderQ and 2tLadderQ was
practically indistinguishable in sequential simulations (with

t2k=1).
Summary: GSA shows that for comparing event queue per-

formance in sequential simulations using our PHOLD bench-
mark, we just need to focus on 1 or 2 parameters. Other
aspects such as: model size, event granularity, fraction of
self-events, GVT rate, etc., do not matter for comparison
of scheduler queues. The scheduler queues to focus further
analysis are: ladderQ, 2tLadderQ, and 3tHeap.

6.1.2 GSA results for Parallel simulations. GSA for par-
allel simulations were conducted using the same procedure
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Figure 10: GSA data from parallel simulations
(4 MPI-processes) showing influential parameters
(2tLadderQ vs. 3tHeap).

discussed earlier but using 4 MPI-processes for parallel simu-
lation. These analysis focused only on ladderQ, 2tLadderQ,
and 3tHeap based on the inferences drawn from the earlier
analyses. The average simulation execution time from 3
replications is recorded for each scheduler queue along with
the parameter set. Initially, we observed that the ladderQ

timings showed a lot of variance in runtime depending on
number of rollbacks that occur. Consequently, to reduce vari-
ance, we have used a time-window of 10 time-units to curtail
optimism and reduce rollbacks. The time-window restricts
the simulation kernel from scheduling events that are more
than 10 time-units ahead of GVT. We use the same time-
window for all scheduler queues for consistent comparison
and analysis.

The chart in Figure 10 shows the summary of the dm,n
statistic or influence of each parameter (see Table 1) on the
outcome – i.e., 2tLadderQ performs better or worse than
3tHeap. The lightly shaded bands show the 95% Confidence
Intervals (CI) computed using standard bootstrap approach
using 5000 replications with 1000 samples in each. The par-
allel results are consistent with the sequential results and
the eventsPerLP is the most influential parameter. However,
in parallel simulation, the percentage of selfEvents (i.e.,
LPs schedule events to themselves) has a more pronounced
influence when compared to λ. The increased impact of
selfEvents arises due to the use of optimistic synchroniza-
tion. The self-events are local and can be optimistically
processed, with some being rolled back, causing more oper-
ations on a larger pending event set. The data also shows
that conspicuous imbalance in partitioning or load balance
has some influence on the outcomes. However, in this study
we explore typical parallel simulation scenarios in which load
is reasonably well balanced.

6.1.3 PHOLD configurations for further analysis. The Gen-
eralized Sensitivity Analysis (GSA) enables identification of
influential parameters, thereby substantially reducing the
parameter space. However, GSA data does not provide an
effective data set to analyze trends, such as: scalability, mem-
ory usage, rollback behaviors, etc. In order to pursue such
analysis we have used 3 different PHOLD configurations called
ph3, ph4, and ph5. The fixed characteristics for the 3 con-
figurations with non-influential parameters is summarized
in Table 3. We use larger simulation end times for parallel
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Table 3: Configurations used for further analysis

Name #LPs Sim. End Time
(Rows×Cols) Seq Parallel

ph3 1,000 (100×10) 5000 20000
ph4 10,000 (100×100) 500 5000
ph5 100,000 (1000×100) 100 1000

simulation so obtain sufficiently long runtimes using 32 cores.
The value of influential parameters, namely: eventsPerLP,
%selfEvents, and λ is varied for comparing different settings,
similar to the approach used by other investigators [3, 10].

6.2 Sequential simulation results

Sequential simulations were conducted to assess the effective-
ness of the different data structures. We pursued sequential
simulations to compare the base case performance of the data
structures, consistent with prior investigations [3, 10]. The
sequential simulations also serve as a reference for potential
use in conservatively synchronized PDES. The sequential ex-
periments were conducted using 3 PHOLD configurations (see
Section 6.1.3) on one compute node of our cluster described
in Section 2.1. The simulations use only 1 MPI-process and
states are not saved . Number of sub-buckets in 2tLadderQ

was set to 1, i.e., t2k=1. For these experiments, the influ-
ential parameters eventsPerLP, λ, and %selfEvents were
varied to explore their impact on relative performance of the
data structures. Event granularity was set to zero resulting
in a fine grained simulation. For each configuration, data
from 10 independent replications were collected and analyzed.

The charts in Figure 11(a)–(c) show change in runtime
characteristics as the most influential parameter eventsPerLP
is varied, for λ=1 (widest range of timestamps) and %self-
Events = 0.25. This configuration was generally the best for
ladderQ. As illustrated by Figure 11(a)–(c), the performance
of ladderQ and 2tLadderQ (t2k=1) is comparable as expected.
However, the 2tLadderQ performs slightly (paired t-test p-
value � 0.05, i.e., averages are not equal) better in some
cases possibly due to improved caching resulting from smaller
tier-2 sub-buckets. These two queues outperform the other
queues for lower values of eventsPerLP.

However, the 3tHeap generally outperforms the other queues
(except for 2tHeap in some cases) for higher values of events-
PerLP. In all cases, there were no inserts into Bottom or Bot-
tom-to-Ladder operations (discussed in Section 4.5.1) that
degrade ladderQ performance. The size of the Bottom rung
was proportional to the number of LPs and eventsPerLP –
i.e., with larger models, Bottom has more events for many
LPs with the same timestamp to be scheduled. In the larger
configurations, the maximum of 8 rungs were fully used. The
maximum rung threshold of 8 was determined to be an effec-
tive setting as discussed in Section 4.5.1 and the same value
proposed by Tang et al [10].

Profiler data (see Section 7.1) showed that the bottleneck in
ladderQ arises from the overhead of re-bucketing events from

rung-to-rung of the Ladder. On the other hand, in 3tHeap

re-bucketing does not occur. Consequently, the overheads of
O(log e

c
) operations in 3tHeap are amortized as number of

concurrent events c increases.
The chart in Figure 11(d) shows the correlation between

the 3 influential parameters and the performance difference
between 3tHeap and ladderQ. Consistent with the GSA re-
sults, the corellogram shows that the most influential param-
eter is eventsPerLP (R=0.93, p=0) followed by λ (R=0.19,
p=0.192) with a very weak corellation. The %selfEvents

has practically no impact on performance. The corellogram
also shows that these parameters are independent and have
no covariance between each other (R~0, p >0.95).

The charts in Figure 12 shows the peak memory usage
corresponding to the runtime data in Figure 11. The mem-
ory size reported is the “Maximum resident set size” value
reported by GNU /usr/bin/time command on Linux. The
memory usage of heap is the lowest in most cases. Since

t2k=1, the memory usage of ladderQ and 2tLadderQ is com-
parable as expected. The 3tHeap initially uses more mem-
ory than the other data structures because of many small
std::vectors and due to std::vector doubling its capacity.
However, the memory usage is amortized as the eventsPerLP

increases. Consequently, the improved performance of 3tHeap
over ladderQ is realized without significant increase in mem-
ory footprint.

6.3 Parallel simulation assessments

The sequential simulation assessments indicated that ladderQ,
2tLadderQ, and 3tHeap performed the best for a broad range
of PHOLD parameter settings. Consequently, we focused on
assessing the effectiveness of these 3 queues for Time Warp
synchronized parallel simulations. The experiments were
conducted on our compute cluster (see Section 2.1) using
a varying number of MPI-processes, with one process per
CPU-core. In order to ensure sufficiently long runtimes with
32-cores, we increased simEndTime for parallel simulations
as tabulated in Table 3. The following subsections discuss
results from the experiments.

6.3.1 Throttling optimism with a time-window. Initially
we conducted experiments with fine-grained setting (i.e.,
granularity = 0) from sequential simulations. We noticed
that the ladderQ had a large variance in runtimes, particu-
larly when it experienced many rollbacks. In several cases,
cascading rollbacks significantly slowed the simulations – i.e.,
ladderQ simulations required over 1 hour while 2tLadderQ

would consistently finish in a few minutes. In order to avoid
such debilitating rollback scenarios for ladderQ and to stream-
line experimental analysis timeframes (otherwise we would
have to run 100s of replications for each configuration to
reduce variance) we have throttled optimism using a time-
window of 10 time-units. The time-window restricts the
simulation kernel from scheduling events that are more than
10 time-units ahead of GVT – i.e., the kernel spins (with-
out optimistically processing pending events but performing
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Figure 11: Sequential simulation runtimes and correlation of 3tHeap performance with PHOLD parameters

other operations) waiting for GVT to advance. The time-
window value of 10 is 50% of the maximum timestamp of
events generated by exponential distribution with λ = 1.
Consequently, most events in current schedule cycle will fit
within this time-window with limited impact on concurrency.
We use the same time-window for all scheduler queues for
consistent comparison and analysis.

6.3.2 Efficient case for ladderQ. The charts in Figure 13
show key simulation statistics for low value of eventsPerLP

= 2 and λ=1 for which ladderQ performed well, consistent
with the observations in sequential simulations. The statistics
show average and 95% CI computed from 10 independent
replications for each data point. The peak rollbacks among all
of the MPI-processes is shown as it controls overall progress
in the parallel simulations. As illustrated by the data in Fig-
ure 13, both the ladderQ and 2tLadderQ perform well for all
three models. In this configuration, overall the ladderQ ex-
perienced the fewest rollbacks. Nevertheless, the 2tLadderQ

continues to perform well despite experiencing more roll-
backs as shown in Figure 13(b). The good performance of
2tLadderQ under heavy rollback is consistent with its design
objective to enable rapid event cancellation and improve
rollback recovery. The maximum of 8 rungs on the ladder
was reached in all the simulations, but with only few (1 to
3) buckets per rung. On average, the number of Bottom to
Ladder operations (that degrade performance) were low per
MPI process, about – ph3: {9144, 8911}, ph4: {1904, 1448},
and ph5: {53, 84} for {ladderQ, 2tLadderQ} respectively.
We did not observe a strong correlation between number of
these operations and rollbacks (see Section 7.1 for additional
statistics).

In this configuration, the 3tHeap runs experienced a lot of
rollbacks when compared to the other two queues despite the
time-window. For ph5 data in Figure 13(c), 3tHeap experi-
enced about 114805 rollbacks on average while ladderQ expe-
rienced only 2341, almost 50×fewer rollbacks. Consequently,
it was slower than the other 2 queues, but its performance is
not significantly degraded – ~1.5× slower despite 50× more
rollbacks. The peak memory usage for all the 3 queues was
comparable in these configurations.
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Figure 12: Comparison of peak memory usage

6.3.3 Knee point for 3tHeap vs. ladderQ. The charts in
Figure 14 show key simulation statistics for the configura-
tion where 3tHeap and ladderQ performed about the same
in sequential (see Figure 11). For ph3, both ladderQ and
2tLadderQ experienced comparable number of rollbacks but
the 2tLadderQ performs better due to its design advantages.
In the case of ph4 and ph5, both the ladderQ and 3tHeap ex-
perienced a comparable number of rollbacks, but much higher
than the 2tLadderQ despite having a time-window. Never-
theless, the 3tHeap conspicuously outperforms the ladderQ

because it is able to quickly cancel events and complete roll-
back processing. For ph5, the 3tHeap outperforms the other
2 queues despite the high number of rollbacks. The peak
memory usage for all the 3 queues was comparable in these
configurations.

6.3.4 Best case for 3tHeap. Figure 15 shows simulation
time and rollback characteristics in high concurrency con-
figuration with ph5, with eventsPerAgent=20, λ=10, and
%Self Evt.=25%. The ladderQ runs exceeded 3600 seconds
in most cases even with a time-window, except for 32 pro-
cesses. Consequently ladderQ experiments with fewer than
32 processes were abandoned. On the other hand 2tLadderQ

performed well due to its design. The 3tHeap outperformed
the other 2 queues despite experiencing 2× more rollbacks.

7 CONCLUSIONS

Efficient data structures, i.e., priority queues for managing
pending event sets play a critical role in overall performance
of both sequential and parallel simulations. In the context of
this study, we broadly classified the queues into single-tiered
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Figure 13: Statistics from parallel simulation with eventsPerLP=2, λ = 1, %selfEvents=25%
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Figure 14: Statistics from parallel simulation with eventsPerLP=10, λ = 10, %selfEvents=25%
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Figure 15: ph5 Statistics (best case for 3tHeap)

(heap) or multi-tiered (2tHeap, fibHeap, 3tHeap, ladderQ,
and 2tLadderQ) data structures based on their design. Multi-
tier data structures organize pending events into tiers, with
each tier possibly implemented differently. Organizing events
into multiple tiers decouples event management and Logical
Process (LP) scheduling permitting different algorithms and
data structures to suit the different needs.

The comparative analysis used a significantly fine-tuned
version of the Ladder Queue (ladderQ) [10]. The objective
of fine-tuning was to reduce the runtime constants of the
ladderQ without significantly impacting its amortized O(1)
time complexity. Reduction in runtime constants is primarily
realized by minimizing memory management overheads – i.e.,
¶ favor few bulk operations via std::vector than many

small linked list nodes in std::list and · recycle mem-
ory or substructures rather than reallocating them. Using
std::vector (i.e., dynamically growing array) enables use
of algorithms with lower time constants, such as: std::sort,
over std::multiset or binary heaps. The bulk memory oper-
ations do consume additional memory, but our analysis shows
that the performance gains significantly outweigh the extra
memory used. Ergo other simulation kernels can significantly
improve overall performance by replacing linked lists with
dynamically growing arrays.

One challenge that arose during design of experiments was
exploring the large multidimensional parameter space in the
PHOLD synthetic benchmark. Large parameter spaces may
also arise with actual simulation models. We propose the
use of Generalized Sensitivity Analysis (GSA) to reduce the
parameter space. We also propose the use of Sobol random
numbers to enable consistent exploration of the parameter
space. GSA does require many simulations to be run to fully
explore the parameter space. In our case, we ran 2,500 × 3
= 7,500 replications. However, GSA was able to significantly
narrow the parameter space, i.e., from 9 down to 2, in a
scientific manner. GSA data shows that concurrency per LP
indicated by eventsPerLP parameter (i.e., batch of events
scheduled per LP), plays the most dominant role in our
benchmark. The data was cross-verified using corellograms
from longer simulations. Similar GSA analysis can be applied
to other models and benchmarks enabling consistent and
focused analyses.

The sequential and parallel simulation results showed that
2tLadderQ performs no worse than our fine-tuned ladderQ

in sequential simulations (with t2k=1). Furthermore, our



SIGSIM-PADS’17, May 24–26 2017, Singapore D. M. Rao et. al.

2tLadderQ outperforms our ladderQ in parallel simulations
because of its design that enables rapid cancellation of events
during rollbacks. In fact, the ladderQ required aggressive
throttling of optimism without which ladderQ was impracti-
cal to use in scenarios with many cascading rollbacks. These
experiments were conducted with fine-grained settings (i.e.,
granularity=0) and results may vary with granularity. How-
ever, GSA data suggests that the variation with changing
granularity would be small. However, increased granular-
ity may allow relaxation of the time-window. The results
strongly favor the general use of 2tLadderQ over the ladderQ.
Furthermore, the multi-tier organization of 2tLadderQ can
further reduce lock contention and consequent synchroniza-
tion overheads in multithreaded simulations.

The experiments show that the runtime constants play an
important role – for example, the Fibonacci heap with its
O(1) time complexity for many operations still did not per-
form well in our benchmarks. The 3tHeap has a much lower
runtime constants enabling it to outperform the fibHeap in
almost all cases. In sequential simulations, the advantages
of 3tHeap are realized in simulations that have higher con-
currency (i.e., larger batches of events) per LP. Figure 16
summarizes the effective regions observed for the 3 queues.
The advantages of 3tHeap is realized only when each LP has
10 or more concurrent events at each time step. Such scenar-
ios with high eventsPerLP arises in epidemic models [9, 11]
and detailed simulation models such as packet-level network
simulations [10]. However, further experimental analysis with
a broader range of models and configurations is needed to for-
mally verify effectiveness of 3tHeap. Moreover, different im-
plementations, possibly in different programming languages
will provide rigorous validation to ensure the results are al-
gorithmic and not an artifact of one specific implementation.
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The multi-
tier data struc-
tures enjoy lower
runtime constants
for event can-
cellation oper-
ations which
play an influ-
ential role in
Time Warp synchronized parallel simulations. Therefore,
the multi-tier data structures perform consistently better in
optimistic parallel simulations.

In overall summary, our analysis strongly favor broad use
of our multi-tier queues, specifically 2tLadderQ and 3tHeap,
replacing all existing DES data structures. The 2tLadderQ

and 3tHeap are consistently effective in sequential and parallel
simulations, with sequential results also bearing potential
application to conservative and multithreaded simulations.

7.1 Supplementary Material

The source code for MUSE and additional supplementary mate-
rial is available online at http://pc2lab.cec.miamiOH.edu/muse/
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