
PEACE: A Parallel Framework for Ab Initio Transcript-Clustering
Dhananjai M. Rao

Miami University

Computer Science and So�ware Engineering (CSE) Department

Oxford, Ohio 45056

raodm@miamiOH.edu

ABSTRACT
Clustering is used to partition the genomic data from Next Genera-

tion Sequencing (NGS) techniques into disjoint subsets that can be

independently processed to ensure further analysis is computation-

ally tractable. Performance is critical in clustering. Consequently,

clustering so�ware is typically developed as a tightly coupled mono-

lithic system which hinders so�ware reusability, extensibility and

introduction of new algorithms as well as data structures. Having

experienced similar issues in our own clustering so�ware, we have

developed a �exible and extensible parallel framework based on

the Message Passing Interface (MPI) called PEACE. �e objective

of the framework is to ease design, implementation, and use of

various clustering methods, including those developed by other in-

vestigators. �is paper presents the PEACE framework, its so�ware

architecture, parallel infrastructure, and distributed data structures

along with a case study of developing a clustering algorithm. Vari-

ous �lters, heuristics, and fragment comparison algorithms are also

discussed to illustrate modularity and extensibility of PEACE which

enables so�ware reuse in unique ways that may not have been fore-

seen when individual components were developed. �e paper also

presents an empirical evaluation of the framework by comparing

its performance to an earlier monolithic implementation of MST-

based clustering. �e results illustrate that the framework meets its

objectives of modularity and extensibility without compromising

performance.

KEYWORDS
Clustering; Expressed Sequence Tag (EST); Object-Oriented Design

Pa�erns; distributed caches, Minimum Spanning Tree (MST); MPI;

parallel framework

1 INTRODUCTION
Sequencing is the technique used for “reading” nucleotide bases

constituting a biological sample. It has rapidly advanced to next-

generation sequencing (NGS) technologies that are widely used to

analyze gene expressions to obtain an organism’s transcriptome,

the set of (spliced) transcripts expressed by the genes of the or-

ganism [1]. NGS techniques achieve high throughput and lower

cost by breaking transcripts into short fragments and “reading”

multiple fragments from di�erent transcripts in parallel [2]. �e

mix of transcript fragments generated by NGS technologies need to

be suitably post-processed using bioinformatics tools to obtain the

actual transcripts [1, 2]. Post-processing large number of fragments

is a computationally demanding and a time consuming task even

Extended version of short paper from ICSE’18, Gothenburg, Sweden
2018. 978-x-xxxx-xxxx-x/YY/MM. . .$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

when distributed computing techniques are employed [2]. �erfore,

reducing time, increasing quality, and improving e�ciency of post-

processing phase is critical for handling diverse and exponentially

increasing volumes of genomic data.

A common approach used to ensure tractable post-processing

analysis of NGS reads is called clustering or binning [3, 4]. In this

context, clustering is the process of segregating the reads according

to the transcript from which they were derived [1]. Clustering

permits further processing and analysis to focus on a related subset

of data and is o�en implicitly performed as part of many bioinfor-

matics tools [4, 5]. However, clustering has to deal with complete

set of sequencing output data and therefore it is a computationally

challenging problem. It has a quadratic average time-complexity

as determined by the length and number of fragments to be clus-

tered [3].

Consequently, sophisticated parallel clustering algorithms and

distributed so�ware tools are necessary to e�ciently cluster today’s

data sets. However, implementing such algorithms is a complex task

and the modules constituting the so�ware tend to be tightly coupled

to extract maximum performance. Tight coupling combined with

poor cohesion exacerbates extensibility and reusability of so�ware

modules. Seemingly straightforward tasks of mixing and matching

(or plug-n-play) of modules from di�erent so�ware to construct

alternative so�ware pipelines can be a daunting task. Moreover,

introducing even small changes to the so�ware system is tedious.

Such issues hinder reusing so�ware modules in modalities that

may not have been envisioned at the time tightly coupled systems

are developed. �ese issues with clustering so�ware are indeed

akin to a similar situation with other bioinformatics so�ware as

summarized in [6] — “Historically, all these sequence assemblers

– each representing many man-years of effort – appear to require

complete and costly overhaul, with each introduction of a new

short-read or long-range technology.”

Unfortunately, the initial version of our clustering so�ware sys-

tem [7] also su�ered from aforementioned shortcomings, hindering

incorporation of new clustering algorithms, heuristics, and seam-

less use of di�erent data structures. �ese issues motivated ques-

tions and investigations into easing design and implementation

of recon�gurable clustering pipelines that are �exible, extensible,

and reusable. Needless to emphasize, the objective was to gain

these bene�ts without compromising overall performance of the

so�ware-pipelines.

Our continuing investigations into clustering have led to the

development of a generic framework called PEACE. �e PEACE frame-

work provides so�ware infrastructure to develop independent so�-

ware modules that are suitably interconnected by the framework to

establish a so�ware-pipeline for clustering. It is important to note

that the PEACE framework presented in this paper is not a speci�c

Extended version of short paper from ICSE’18, May 27–June 03 2018, Gothenburg, Sweden D. M. Rao

NGS

Technique

Biological

Sample Clustering

− Roche/454

− Illumina

− SOLiD

ATCCCTAGCA

ATTAGATT

TAGATTAGGG

Filtering

Singletons

F
u

rt
h

er
A

n
a

ly
si

s

Bad or

Unusable

Reads

Reads
Clustered

Figure 1: Overview of major steps leading up to clustering of reads from NGS technologies

clustering algorithm but a generic, framework to ease design, im-

plementation, and customization of various clustering algorithms.

In other words, the focus of this paper is on the design and e�ec-

tiveness of the generic so�ware infrastructure provided by PEACE

and not on the speci�cs of a given clustering solution. However, for

assessing the e�ectiveness of the framework, selected algorithms

and heuristics published in the literature [7, 8] have been imple-

mented using the framework. Consequently, the paper does not

discuss clustering algorithms to contrast them against this research

but to provide background on heuristics and clustering solutions

used for empirical assessment of the framework.

�e design of PEACE has been motivated by the need to address

the shortcomings of the earlier tightly coupled, monolithic design.

�e revised design of PEACE has steadily evolved over a period of

few years to addresses earlier shortcomings by providing a more

�exible core framework that loosely couples various independent,

but cooperating cohesive subsystems to provide an e�ective so�-

ware framework for clustering. One of the primary goals of the new

design is to provide �exibility and extensibility without compromis-

ing performance. Accordingly, suitable design strategies have been

chosen from alternatives using performance pro�ling to provide

best possible tradeo�s between �exibility and performance.

�is paper presents the details on the new object-oriented frame-

work of PEACE, its parallel infrastructure, and its distributed data

structures and caches in Section 4 through Section 8. �ese sections

are preceded by Section 2 that provides background information

and Section 3 that presents a brief survey of prior, closely related

research investigations. An experimental assessment of scalability

and performance of PEACE is presented in Section 10. Section 11

concludes the paper by summarizing the outcomes of this research.

2 BACKGROUND
�is section presents only a succinct and simpli�ed summary on se-

quencing and the various operations leading to clustering. However,

the �eld of sequencing, associated technologies, and challenges is

vast and readers are referred to the literature for more detailed

survey of this fast moving �eld [2]. An overview of the major steps

involved in clustering sequences is shown in Figure 1 and each

major step is brie�y described in the following paragraphs.

Sequencing is the process of identifying the sequence of nu-

cleotide bases, namely namely adenine (A), guanine (G), cytosine

(C), and thymine (T), that constitute Ribonucleic acid (RNA) and

Deoxyribonucleic acid (DNA) [2]. Sequencing of RNA, particularly

messenger RNA (mRNA) that determines the protein produced

due to cellular activity, is not easy. �e RNA is typically reverse-

transcribed into DNA called complementary DNA (cDNA) and

cDNA is sequenced. Prior to NGS techniques, RNA sequencing was

accomplished using Sanger sequencing which produced Expressed

Sequence Tags (ESTs). Immaterial of the technology used, from

a computing perspective, sequencing produces a string over the

alphabet string A,G,C,T .

Sequencing techniques have rapidly advanced to next-generation

sequencing (NGS) technologies such as Roche/454, Illumina, and

SOLiD [2]. NGS techniques perform massively parallel sequencing

of nucleotide bases by generating “polymerase colonies” or polonies.

�e sequences are typically short, ranging from 400-500 bases for

Roche/454 down to just 50 bases for SOLiD. Furthermore, the reads

from various sub-segments of the sample are delivered in a mixed

batch and have to be segregated for further processing. �e NGS

technologies typically have few percentage points of error in the

reads [2]. Sequencing errors manifest themselves in characteristic

manners o�en leading to repeated pa�erns called low-complexity

regions.

Reads with errors or low-complexity regions can negatively

impact quality of clustering. Consequently, the reads are typically

�ltered to eliminate reads that may degrade quality of clustering [2].

Filtering is a complex operation that may or may not be included

as part of clustering so�ware. �e �ltered NGS reads are then

clustered to suitably segregate reads obtained from the same sample.

Depending on the NGS technology and the nature of the biological

sample a variety of clustering strategies are used. Input fragments

that could not be clustered are typically reported as singletons or

outliers a�er clustering. In certain scenarios, singletons are useful

for drawing biological or environmental observations. �e clustered

data is then subject to further analysis and processing based on the

objective of the study. Clustering is a powerful tool to explore and

study large-scale complex data. It is o�en implicitly performed as

part of many bioinformatics tools and as a “pre-assembly” step. It is

an important phase in processing fragments from NGS technologies

and is an active area of research and development.

3 RELATED RESEARCH
Clustering continues to remain an active area of research and a

number of clustering approaches have been proposed. However,

most clustering so�ware have been developed as tightly coupled,

relatively in�exible systems and at the time of this work, very few

generic frameworks such as PEACE have been proposed. Conse-

quently, rather than contrasting the generic framework (which is

Ab. Initio Clustering Extended version of short paper from ICSE’18, May 27–June 03 2018, Gothenburg, Sweden

not a clustering solution) against speci�c transcript clustering al-

gorithms, this section surveys clustering solutions, including those

used for empirical assessments, to highlight various aspects to be

addressed to develop a framework. �e readers are directed to

the literature for a comprehensive survey of various clustering

algorithms and tools [7, 8].

Hazelhurst et al [8] propose a parallel clustering tool called wcd

that uses the d2
algorithm along with the u/v and t/v huristics

to improve performance. �ese algorithms divide a given NGS

read into a series of 6 to 8 contiguous nucleotides called words
and compare words to detect relationship. wcd forms clusters by

merging reads with minimal dissimilarity into the same cluster.

�e d2
algorithm along with u/v and t/v heuristics proposed by

Hazelhurst have been implemented using the PEACE framework for

experimental evaluation. In addition, enhanced versions of these

algorithms developed as part of our earlier investigations [7] and

are also used for empicial evaluation. Recently, Hazelhurst et al [3]

proposed a heuristic based on multiple long exact matches that are

su�cient spread across a pair of reads to identify candidates for

clustering. Implemented using su�x arrays, Hazelhurst et al [3]

show signi�cant performance improvements. A similar parallel

su�x tree based implementation involving the use of maximal

common substring of pairs has been proposed by Kalyanaraman et
al [5]. �ese clustering solutions are implemented in C language

using MPI for parallelization and heavily use heuristics to improve

performance.

More�i et al [9] present a framework called SAND that interfaces

with the Celera open-source assembly toolkit, to enable scalable

assembly on clusters, clouds, and grids. �e so�ware uses a k-mer

counting approach to identify candidates, a strategy su�ciently

close to clustering using common substrings mentioned in the

previous paragraph. Similar to the proposed e�ort, More�i et al
also strive to develop a modular system that in which the Celera

assembler can be replaced with other backends. Furthermore, they

also note that development of modular bioinformatics so�ware

components is a fast growing trend [9].

4 CORE PEACE FRAMEWORK
�e primary objective of the PEACE framework is to provide a mod-

ular, extensible, and performant infrastructure that eases incor-

porating new algorithms and data structures in various phases

of clustering. Modularity and extensibility has been realized by

leveraging object-oriented design pa�erns [10] and architecting

the framework as a collection of loosely coupled subsystems. �e

subsystems have been designed and developed to ease paralleliza-

tion by adopting the Single Program Multiple Data (SPMD) [11]

paradigm. PEACE uses the Message Passing Interface (MPI) [11]

to enable parallel and distributed computing on Supercomputing

clusters. �e design also places emphasis on rigorous memory

management to ensure minimal memory footprint as it is a critical

resource when processing “big data”. �e proposed architecture has

been has been implemented in C++ to meet the performance goals

and expose full control on memory usage. Moreover, the design

have been chosen from alternatives using performance pro�ling to

provide best possible tradeo�s between �exibility and performance.

An architectural overview of the subsystems constituting the

core of the framework is shown in Figure 2. �e top-level PEACE
class performs the core task of controlling and coordinating in-

stances of four independent subsystems, namely: the input subsys-

tem, the filtering subsystem, the clustering subsystem, and the

output subsystem. Life cycle management of the subsystems are

accomplished via the SubSystem class which exposes a polymor-

phic Application Programming Interface (API) and serves as the

base class for the concrete subsystem implementations. In addition,

the design facilitates introduction of additional subsystems into

the framework. �e SubSystem API is comprehensive to encom-

pass the functionality of diverse subsystems. Consequently, some

subsystems merely provide no-op implementations for some of the

APIs in SubSystem. For example, only the input subsystem typically

implements the loadInputs method while the output subsystem

implements the generateOutputs method.

Subsystems in PEACE, have been designed using the façade pat-

tern [10] to encapsulate and manage the collection of components

constituting the subsystem. �e Component class is the abstract

leaf class of the subsystem hierarchy. It employs a composite pat-

tern [10] to compose subsystems using hierarchies of components.

In contrast to SubSystem, the Component de�nes only a minimal

API for all components to enable further delegation of life cycle

activities. Figure 2 illustrates the composition of the output sub-

system using a subset of components, namely the StandardOutput
and ClusterWriter components, to illustrate an example. A more

detailed discussion on the output subsytem, other subsystems in

PEACE is presented in Section 5 through Section 8.

A two-phase approach has been utilized in the main PEACE class

to dynamically compose and con�gure a subsystem using informa-

tion from command-line arguments. �e �rst phase commences

the life cycle activities by instantiating the subsystems. Subsystems

establish default component hierarchies when constructed. Next,

valid command-line parameters at the subsystem-level are gath-

ered in an ArgParser object using the addCommandLineArguments
API call. �e ArgParser is used to parse command-line argu-

ments, completing the �rst phase. �e second phase involves using

command-line arguments to instantiate and customize components

and sub-components. �is phase proceeds in a recursive, depth-

�rst manner through invocation of the initializeSubSystem and

initializeComponentsAPI methods. During this phase, the frame-

work permits additional command-line parameters to be added to

the ArgParser by components and sub-components. �e second

phase ends a�er command-line arguments are re-parsed and recur-

sive, depth-�rst calls to initializeSubComponents API method

complete successfully. At the end of the two phases a complete

so�ware pipeline is established for performing clustering. Recol-

lect that PEACE embodies the SPMD paradigm and consequently

the same so�ware pipeline is established on all parallel processes.

�e initial setup phases establish necessary cross-references to

frequently accessed data to minimize subsequent overheads.

�e independent subsystems are loosely data-coupled via a shared,

singleton [10] object called the RuntimeContext shown in Figure 2.

In addition to enabling loose coupling, the shared context also

aids in minimizing memory footprint and eliminating unneces-

sary computation. �e context object is populated during second

phase of subsystem composition with references to shared data

Extended version of short paper from ICSE’18, May 27–June 03 2018, Gothenburg, Sweden D. M. Rao

SubSystem

#runtimeContext: RuntimeContext*

+getKind(): SubSystemKind

+addCommandLineArguments(out argParser:ArgParser)

+initializeSubSystem(inout argParser:ArgParser&): int

+initializeComponents(): int

+loadInputs(): int

+initializeSubComponents(): int

+run(): int

+generateOutputs(in success:bool)

+finalizeComponents(in success:bool)

+finalizeSubSystem(in success:bool)

+setContext(in context:RuntimeContext*)

+getContext(): RuntimeContext* const

+~SubSystem()

#SubSystem()

Component

-name: string

-initialized: bool

#subSystem: SubSystem*

+addCommandLineArguments(out argParser:ArgParser&)

+isInitialized(): bool

+initialize(): bool

+run(): int

+finalize()

+getContext(): RuntimeContext*

#Component(in name:string)

+~Component()

InputSubSystem

-inputFileFactory: InputFileFactory

+sharedESTList: OnDemandESTList

FilteringSubSystem

-filterChain: FilterChain

-filterNames: vector<string>

ClusteringSubSystem

-heuristicChain: HeuristicChain

-clusterMaker: ClusterMaker*

+ESTAnalyzer: ESTAnalyzer*

OutputSubSystem

-stdOutput: StandardOutput

-mstWriter: MSTWriter

+clusterWriter: ClusterWriter

-filterFailFile: string

-filterPassFile: string

+getMSTWriter(): MSTWriter&

StandardOutput

-coutFileName: string

-coutStream: ostream*

-clogFileName: string

-clogStream: ostream*

-logLevel: LogLevel

+initialize(): bool

+finalize()

+redirect(inout os:ostream&,in buf:streambuf*,

 in fileName:string&): ostream*

ClusterWriter

-fileName: string

-prettyPrint: bool

-guiPrint: bool

+write(): bool

RuntimeContext

#estList: ESTList*

#analyzer: ESTAnalyzer*

#clusterMaker: ClusterMaker*

#listListener: ESTListListener*

-config: map<string,string>

#RuntimeContext()

+printConfig(out os:ostream&) const

+addConfig(in key:string&,in value:string&)

+getESTList(): ESTList* const

+getAnalyzer(): ESTAnalyzer* const

+getClusterMaker(): ClusterMaker* const

PEACE

-subSystems: vector<SubSystem*>

-context: RuntimeContext

1..* 1

1

1

Figure 2: Architectural overview of core sub-systems constituting PEACE (diagram shows only the core attributes andmethods)

structures and primary components managed by each subsystem.

�e components are exposed only via an abstract interface per-

mi�ing the use of various concrete implementations at initializa-

tion. �e RuntimeContext only exposes an immutable interface

to shared components and data structures to enforce an implicit

publish-subscribe style of interaction with a single publisher. �e

architecture also permits the components to be used in a ad hoc

manner via the framework’s interactive console.

PEACE has been designed from the ground-up using the SPMD

paradigm to run on Supercomputing platforms via MPI. �e frame-

work provides lightweight wrappers for most of the MPI calls to

streamline cross-platform development and increased portability.

�e MPI wrappers enable a single implementation to run in parallel

when MPI is enabled or gracefully degrade and run serially when

MPI is disabled. �e wrappers utilize compiler macros to adapt

their operation to the operating system and platform con�guration.

Moreover, the wrappers are designed to ease replacement of MPI

with alternative message-passing libraries to foster diverse research

investigations. A more detailed discussion of the operations and

data structures managed in four subsystems are presented in the

following sections.

5 THE INPUT SUBSYSTEM
�e input subsystem performs the task of loading NGS fragments

or Expressed Sequence Tag (EST) entries from various input �le

formats. A general purpose cDNA class, also aliased to EST class, en-

capsulates all the information about a transcript fragment obtained

via NGS techniques. It provides a storage-format independent

unmarshalled version of fragment data including: the nucleotide

sequence, phred quality score for each nucleotide, and general

information about the fragment. �e set of fragments to be pro-

cessed are stored in an abstract ESTList which is the primary data

structure that is exposed and shared by this subsystem via the

RuntimeContex (see Figure 2). It logically represents the complete

set of data to be clustered from one or more input data �les. How-

ever, its concrete implementation does not load the complete set

of fragments into memory in all parallel processes. Instead, PEACE

evenly subdivides the total number of fragments across the various

processes and only the pertinent subset of fragments are initially

loaded. Other fragments are loaded on-demand. However, this

behavior can be overridden in the framework. A prefetching call

was introduced in the framework to cache a batch of fragments

and bypass various checks performed for on-demand loading. �e

prefetching improved performance of u/v heuristic by almost 25%

for large data sets.

An InputFile interface class facilitates loading fragments from

commonly used data �le formats such as: FASTA which is a text �le

format; and a binary Standard Flowgram Format (SFF). �e concrete

classes for reading various �le formats are instantiated using the

factory design pa�ern [10]. �e InputFile class handles the task

of removing masked bases from reads based on command-line

arguments. Command-line options can also be used to substitute

ambiguous nucleotides with suitable amino-acid entries. �ese

operations were found to streamline various sub-steps in clustering

operations [7]. �e fragments loaded by this subsystem are �ltered

and clustered as discussed in the following subsections.

6 THE FILTERING SUBSYSTEM
Operations of the filtering subsystem are performed prior to clus-

tering to suppress erroneous fragments (see Section 2 for sources

of errors) from clustering as they are known to hinder clustering

and degrade clustering quality. �is subsystem is centered around

a FilterChain component which composes the subsystem as an

arbitrary series of �lters. �e order of �lters and individual �lter

con�guration enables di�erent types of �ltering to be accomplished.

Concrete �lters are indirectly instantiated via a FilterFactory
which uses the factory design pa�ern. Each �lter in this subsystem

extends the Filter sub-component base class to provide speci�c �l-

tering operations. For example the framework includes a LCFilter
component that is used to eliminate reads with low-complexity

regions. �e LCFilter uses the analyzer component from the

globally shared RuntimeContext to compare a repeated pa�ern

of nucleotides representing low-complexity region against input

fragments to identify and �lter out problematic fragments. Mul-

tiple instances of the LCFilter¸ with di�erent pa�erns are used in

a chain to �lter out reads with di�erent forms of low-complexity

regions. Con�guration of the �lter chain and individual �lters is

Ab. Initio Clustering Extended version of short paper from ICSE’18, May 27–June 03 2018, Gothenburg, Sweden

accomplished with command-line parameters that are processed in

two phases as discussed in Section 4.

�e SPMD paradigm dictates that the same �lter chain is es-

tablished on all parallel MPI processes. However, the filtering

subsystem evenly subdivides the global list of fragments in the

shared RuntimeContext between multiple processes to perform

�ltering in parallel. �e FilterChain short circuits �ltering and

does not permit a fragment to �ow through the complete chain

when it is rejected by a �lter. Filtered fragments from each pro-

cess is tracked using their unique identi�ers. A�er all fragments

are processed, the identi�ers of �ltered fragments are broadcast

and each process and are ignored during clustering. Furthermore,

dummy-clusters are created for each �lter and rejected fragments

are placed in corresponding dummy-clusters for review by the user

at the end of clustering. �e fragments that successfully pass �l-

tering are clustered in parallel by the clustering subsystem as

discussed in Section 7.

7 THE CLUSTERING SUBSYSTEM
�e operations related to parallel clustering of NGS fragments

are performed by the clustering subsystem. It is the most com-

plex subsystem with multiple, independent but interacting, hierar-

chies of Components. �e components constituting this subsystem

are categorized into the following three main class-hierarchies as

shown in Figure 3: ClusterMakers, Analyzers, and Heuristics.

�e task of a ClusterMaker is to construct clusters by placing

related fragments in the same cluster. Identi�cation of related

fragments is accomplished by using a suitable analyzer that can

compare two given fragments to yield a pseudo metric that is a

measure of similarity or dissimilarity between them. Comparison

of fragments is o�en computationally intensive and typically light-

weight heuristics are used to avoid unnecessary comparisons. �e

Heuristic class-hierarchy provides provides various heuristics

that can be used to improve overall performance of clustering.

�e ClusterMakerFactory shown in Figure 3 is used to instanti-

ate a concrete child component such as the MSTClusterMaker dur-

ing the second phase of initialization a�er �rst round of command-

line argument parsing has been completed. Second phase of ini-

tialization described in Section 4 is used to further customize the

object and establish cross-references in the RuntimeContext and

other Components in the subsystem. Due to diversity in clustering

strategies, the ClusterMaker does not enforce any speci�c cluster-

ing semantics. Instead, speci�cs of parallel clustering are delegated

to concrete implementation classes such as MSTClusterMaker. Sec-

tion 9 provides a more detailed discussion on the operations of the

MSTClusterMaker and illustrates detailed use of the framework.

�e framework provides various utility methods to facilitate

parallel clustering and managing distributed caches along with

interfaces to streamline inter-component interactions. For instance,

the framework strives to streamline processing by permi�ing a

single fragment to be designated as the reference fragment which

is to be compared with other fragments to be clustered. Se�ing a

consistent reference fragment across the parallel system permits

components in the analyzer and heuristic hierarchies to optimize

their operations by caching and reusing previous values until the

reference fragment is changed.

�e ESTAnalyzer class hierarchy shown in Figure 3 provides

the infrastructure for developing various algorithms that can be

used to compare cDNA fragments to identify candidates for clus-

tering. �e framework API method analyze mandates analyzers

generate a quantitative pseudo metric a�er comparison of a pair

of fragments. Although represented as �oating-point numbers by

the framework, it is important to note that pseudo metrics need

not be transitive, commutative, or associative. Consequently, the

API includes additional polymorphic methods for comparisons and

other operations involving pseudo metrics.

�e analyzer hierarchy supports both similarity-based and distance-

based metrics. �e API methods such as getInvalidMetric and

compareMetrics shown in Figure 3 provide a neutral interfaces

that can be consistently used with both types of analyzers that can

be distinguished via the isDistanceMetric. For example the CLU
class shown in Figure 3 implements the CLU algorithm proposed

by Ptitsyn et al [12] for generating similarity scores.

�e classes D2, TwoPassD2, and AdaptiveTwoPassD2 provide

distance-based pseudo metrics that are based on the alignment

free d2
algorithm [8]. �e TwoPassD2 analyzer proposed in ear-

lier research [7] determines the sub-fragments with maximum

likelyhood of best d2
sore in the �rst phase and then runs d2

within the sub-fragments during the second phase [7]. Similarly,

the AdaptiveTwoPassD2 is a redesigned version of the distance

measurement algorithm used in the previous version of PEACE. It

extends TwoPassD2 by using a set of precomputed parameters man-

aged by the ParameterSetManager to customize the operation of

d2
algorithm based on the length of fragments being compared.

Customization based on fragment length provides be�er quality

while reducing average number of comparisons. A more detailed

description and comparisons of these algorithms is available in the

literature [7, 8]. �e framework also includes a straightforward

MatrixFileAnalyzer that obtains pseudo metrics from a text �le

that is organized as a matrix of values. �e data values can either

be similarity or distance pseudo metrics. Other algorithms have

also been implemented to verify and demonstrate the �exibility of

the PEACE framework.

�e clustering subsystem includes a collection of lightweight

heuristics that can be used to minimize the number of heavyweight

comparisons performed by analyzers. �e Heuristic component

forms the base class of heuristics in the subsystem. �e framework

has been used to implement a redesigned version of the u/v and

t/v heuristics reported in the literature [7]. Although these two

heuristics are independent of each other, in the revised design,

the heuristics have been implemented using the polymorphic API

to maximize code reuse, demonstrate modularity, and e�ective

coupling supported by the framework API.

Similar to �lters, heuristics are organized into a �exible and

dynamically composable chain managed by the HeuristicChain
class. Con�guration of heuristics constituting the chain is accom-

plished via the two-phase processing of command-line arguments

as discussed in Section 4. �e use of heuristics in the chain is short

circuited when a heuristic rejects a given pair of fragments for

further processing. Consequently, it is preferable to con�gure the

chain to contain faster or more permissive heuristics prior to slower

or more restrictive ones. Accordingly, by default the framework

con�gures the chain to contain the u/v heuristic prior to the t/v

Extended version of short paper from ICSE’18, May 27–June 03 2018, Gothenburg, Sweden D. M. Rao

ClusteringSubSystem

-heuristicChain: HeuristicChain

-clusterMaker: ClusterMaker*

+ESTAnalyzer: ESTAnalyzer*

ClusterMaker

#analyzer: ESTAnalyzer*

+makeClusters(): int

+addDummyCluster(in name:string&): int

+addEST(in clusterID:int,in estID:int)

+getClusters(): Cluster* const

ClusterMakerFactory

+create(in name:string&,

 in analyzer:ESTAnalyzer*)

MSTClusterMaker

-mst: MST*

-MSTCluster: root

-cache: MSTCache*

+manager(): int

+worker(): int

#populateMST(): int

#buildClusters(): int

#analyze(otherEST:const EST*): float

ESTAnalyzer

#refEST: const EST*

#chain: HeuristicChain*

+setReferenceEST(est:const EST*)

+analyze(in otherEST:const EST*,

 in useHeuristics:bool=true): float

+isDistanceMetric(): bool const

+getInvalidMetric(): float const

+compareMetrics(in metric1:float,

 in metric2:float): bool

FWAnalyzer

D2 TwoPassD2

+runD2Asymmetric(out s1MinScoreIdx:int&): float

+runD2Bounded(in sq1Start:int,

 in sq1End:int,in sq2Start:int,

 in sq2End:int): float

AdaptiveTwoPassD2

MatrixFileAnalyzer

ESTAnalyzerFactory

+create(in name:string&)

Component

Details are not
shown for brevity

HeuristicChain

-chain: vector<Heuristic*>

-hints: vector<int>

-paramMgr: ParameterSetManager

+addHeuristic(in filter:Filter*)

+initialize(): bool

+finalize(): void

+shouldAnalyze(other:const EST*): bool

+setReferenceEST(refEST:const EST*): int

+setHint(in key:HintKey,in value:int)

Heuristic

-chain: HeuristicChain

+initialize(): bool

+finalize(): void

+shouldAnalyze(other:const EST*): bool

+setReferenceEST(refEST:const EST*): int

CLU

#getSimilarity(in hash:vector<int>&,

 in seq:string&)

+isDistanceMetric(): bool const

UVHeuristic

-hash: UVHashTable

-u: int

-v: int

-wordShift: int

+shouldAnalyze(other:const EST*): bool

+setReferenceEST(refEST:const EST*): int

#computeHash(in seq:string&)

TVHeuristic

-t: int

-windowLen: int

+shouldAnalyze(other:const EST*): bool

+setReferenceEST(refEST:const EST*): int

HeuristicFactory

+create(in name:string&,

 in chain:HeuristicChain*)

ParameterSetManager

SubSystem

Details are not shown for brevity

This UML diagram only shows a subset of the attributes and polymorphic
methods in class hierarchies for brevity. Readers are referrred to online
documentation and collaboration diagrams for full details on the various
interface specifications, concrete implementation classes, and command-
line arguments available for configuring this subsystem.

Figure 3: Overview of the commonly used classes and class hierarchies in the clustering subsystem

heuristic as the former is faster and more permissive than the la�er.

�e use of the clustering subsystem components, its distributed

caching infrastructure, and the operations of the redesigned MST-

based clustering algorithm are further discussed in Section 9.

8 THE OUTPUT SUBSYSTEM
�e output subsystem houses the framework components that deal

with writing various outputs and data from the RuntimeContext
in di�erent formats. Some of the core components constituting

this subsystem are shown in Figure 2. �e framework already in-

cludes wrappers for standard output (std::cout), standard error

(std::cerr), and standard log (std::clog) streams to facilitate

redirection of the streams to �les. In addition, wrappers for logging

also provide a convenient mechanism to generate logs at various

levels for selective logging. �e framework also facilitates coor-

dination between corresponding components when operating in

parallel.

�e existing components in this subsystem operate in three dis-

tinct modes supported by the framework. Components such as

output stream wrappers operate asynchronously writing outputs

on a per-process basis. Singleton components such as progress

report generators run only on process with MPI-rank zero and peri-

odically write status reports to a speci�ed output �le. Other output

components work under the assumption of shared, networked �le

system (NFS) and write voluminous data to a given output �le

using barrier-synchronization and by taking turns in the order of

their MPI-ranks. Individual components suitably handle speci�cs of

�le formats and other peculiarities associated with a given output

format.

9 MST-BASED CLUSTERING
�e framework described in Section 4 through Section 8 has been

used to redesign the Minimum Spanning Tree (MST) based method

for clustering from our earlier research [7]. �e primary objective

of the redesign was to conduct “apples-to-apples” experimental

comparisons to establish e�ectiveness of the proposed framework.

It is important to bear in mind that PEACE is a general purpose

framework and is not a speci�c clustering approach. Consequently,

any clustering solution can be implemented using the framework.

However, a MST-based clustering propsed in earlier investigations

was chosen as the reference test case due to availability and su�-

cient complexity. Readers are referred to the literature for detailed

discussion on the biological signi�cance of MST-based clustering

and the quality of clusters produced by it [7]. Selected details are

discussed in this section to highlight the role of the framework and

provide basis for implementing other clustering algorithms.

A conceptual overview of the various framework components

and distributed data structures in the new design is shown in Fig-

ure 4. �e MSTClusterMaker introduced in Section 7 coordinates

the tasks associated with construing the MST in parallel and gen-

erating clusters from the MST. �e MST is built using a modi�ed

version of Prim’s algorithm and single-linkage style of clustering

is performed by suitably cu�ing edges of the MST [7]. It has been

implemented by extending the abstract ClusterMaker base class in

the framework and operates serially on a single process or in paral-

lel when multiple processes are used. �e uni�ed implementation

approach ensures that the operations in serial and parallel mode

are not signi�cantly di�erent as the framework insulates the class

from several details such as partitioning of reads to be clustered,

�ltering reads, and providing wrappers to streamline MPI-based

operations. Partitioning of fragments also logically assigns owner-

ship and processing of fragments to a given process. Furthermore,

the conceptual structure and organization of the so�ware pipeline

is identical on all parallel processes in concordance with the SPMD

paradigm. However, as shown in Figure 4, when running in parallel,

the process with MPI-rank 0 implicitly operates as the manager to

Ab. Initio Clustering Extended version of short paper from ICSE’18, May 27–June 03 2018, Gothenburg, Sweden

u/v
Heuristic

t/v
Heuristic

MST Cluster Maker
Manager Process

(MPI Rank == 0)

u/v
Heuristic

t/v
Heuristic

ID Dist

ID Dist

ID Dist

ID Dist

ID Dist

IDID

MST Cache

lists for local reads

Has sorted adjacency

MST Cluster Maker
Worker Process

(MPI Rank > 0)

MPI−based interactions via Framework API

Operations to populate and prune the distributed caches are performed by the

Cluster Maker through framework API that are coordinate via MPI−calls. MST Cache

lists for local reads

Has sorted adjacency

ID ID

ID Dist

ID Dist

ID Dist

ID Dist

ID Dist

Adaptive
TwoPassD2
cDNA Analyzer

Adaptive
TwoPassD2

cDNA Analyzer

Heuristic ChainHeuristic Chain

Shared EST List
Subset of local reads are shown in black

Subset of local reads are shown in black

MST is constructed by Manager and then

cut (based on edge distance) to form clusters.

Shared cDNA List

Figure 4: Conceptual overview of the runtime structure used for MST-based clustering

coordinate activities between itself and other parallel processes

called workers.

One fragment is randomly chosen by the manager to serve as

the new reference fragment to be added as a node to the MST being

constructed. �e manager broadcasts the newly added node to all

processes. Every process searches its subset of unclustered frag-

ments to identify reads that are closely related to the newly added

node. Closely related reads are identi�ed using the analyzer object

set by the framework in the RuntimeContext. �e pseudo-metric

reported by the analyzer is also used as the edge weights in the

MST. Furthermore, as illustrated in Figure 4 the analyzer can be

con�gured to use a series of lightweight heuristics to avoid unnec-

essary calls to the heavyweight algorithms used by the fragment

analyzer. �e default con�guration uses the adaptive two-pass d2

analyzer along with the u/v and t/v heuristics that were discussed

in Section 7.

Each process constructs a list containing candidate fragments

along with edge-weights for clustering. �e list is dispatched by

the framework to the process that logically owns the reference

fragment. �e owning process merges the list dispatched by each

process and sorts the entries to identify best candidates for cluster-

ing. �e sorted list of information is cached at the owning process

in the MSTCache as shown in Figure 4. �e MSTCache is organized

as lists-of-lists and contains best-neighbor information for the frag-

ments that are logically assigned to it. Next, the manager broadcasts

request to each worker to report its local best candidate to be added

to the MST based on the information in the MSTCache. �e manager
uses its local cache and the information reported by the worker
processes to identify the best fragment and suitably adds it to the

MST. �e newly added fragment is used as the reference in the next

cycle of operations until all the fragments have been added to the

MST. �e framework also provides interfaces to prune caches as

fragments are added to the MST to minimize memory footprint.

Repeated pruning of caches may result in removal of all entries in

lists associated with certain fragments. When lists become empty,

the framework triggers repopulation of lists. Repopulation can be

suppressed via command-line arguments to further optimize and

control operations of the framework.

Once the MST has been constructed, the manager process com-

putes the edge-cu�ing threshold for forming clusters. �e edge-

cu�ing threshold is computed as the mean of edge weights plus the

standard deviation. Edges with weight larger than the edge-cu�ing

threshold are removed to form clusters. Recollect that the pseudo-

metrics reported by the ESTAnalyzer is used as the edge weights

in the MST. Ergo, edges that exceed the edge-cu�ing threshold

connect fragments that are not closely related and are removed to

form clusters as shown in Figure 4. Once the clusters are formed

and the RuntimeContext is updated, the framework suitably writes

the cluster information via components in the output subsystem.

10 EXPERIMENTS
�e motivation for this research is to design a �exible and perfor-

mant framework that can be used to design and implement various

clustering algorithms (and not to propose a new clustering solu-

tion). Consequently, the primary objective of the experiments to

empirically identify any runtime overheads introduced by the frame-

work and not contrast various aspects of clustering against other

clustering alogrithms. In this research study the monolithic MST-

based clustering implementation along with various heuristics and

distributed caches has been suitably incorporated into the newly

designed framework as discussed in Section 9 to provide an “apples-

to-apples” comparison. �e objective of implementing a diverse

set of algorithms is to demonstrate the �exibility and comprehen-

siveness of the API exposed by the various subsystems constituting

the framework. �e algorithms to be implemented were chosen

based on their popularity and availability of so�ware tools for com-

parison. �e algorithms were suitably implemented and veri�ed

using a variety of data sets. Interoperability between various im-

plementations was also tested. In addition, performance of our

implementation was compared with original implementations of

individual algorithms that were mostly in C-language. �ese exper-

iments indicated that the object-oriented implementation using the

Extended version of short paper from ICSE’18, May 27–June 03 2018, Gothenburg, Sweden D. M. Rao

Table 1: Datasets used for experiments

Species Name #Reads Read Length Statistics

Avg±SD Min Max

R. Communis 57690 709±199 49 1361

A. �aliana 76941 427±128 33 1552

C. Reinhardtii 189975 553±183 100 1541

PEACE framework provided comparable performance with less than

3% degradation. Detailed pro�ling using valgrind indicated that

the degradation was primarily due to overhead of polymorphic calls

used in the C++ implementation. �e performance pro�les indicate

that the depth of polymorphism did not play a signi�cant role. �e

slight degradation is the cost of achieving increased interoperability

and extensibility of the object-oriented subsystems.

Having veri�ed functionality and performance of individual sub-

systems, the next phase of experimentation places emphasis on

system-level performance involving interactions between individ-

ual sub-systems. In order to provide e�ective empirical comparison,

the MST-based clustering so�ware reported in the literature [7]

has been used as the base case. It must be noted that the cluster-

ing solutions generated in both cases were veri�ed to be identical

enabling undivided pursuit of the primary objective of identifying

overheads introduced by the PEACE framework. An experimental

comparison of the performance of the previous and new implemen-

tations using three di�erent data sets shown in Table 1 is discussed

below. �e experiments focus on the objective of this research

(which is to develop a general purpose framework and not a spe-

ci�c clustering approach) and readers are referred to the literature

for other analysis involving clustering tools developed by other

researchers [7].

�e experiments conducted to compare the monolithic MST-

based clustering against the new loosely coupled implementation

commenced with validating that the clustering solution generated

in both cases were identical. Having validated overall functionality,

the two systems were used to cluster three di�erent data sets shown

in Table 1 using a varying number of MPI processes. �e time

for clustering and the peak memory usage is shown in Figure 5

and Figure 6 respectively. �e experiments were conducted on

our cluster which consists of 36 compute nodes interconnected

by Myrinet and a shared �le system of 15 TB. Each node has dual

quad-core 2.26 GHz Intel Xeon E5520 CPUs and 24 GB of memory.

�e experimental data in Figure 5 indicates that the new PEACE

framework introduces about 5% degradation in performance when

statistically compared to the earlier implementation. Similar to

earlier pro�ler observation, overheads of polymorphic calls in the

object-oriented framework was the primary factor contributing

to the slight performance degradation. However, as the number

of processes were increased the gap slowly decreased as the cost

of polymorphism is distributed across more CPUs. In fact for the

smaller data set with R. Communis gene expression data, the per-

formance of the two systems on 32 processors were statistically

indistinguishable when the 95% con�dence intervals were taken

into account.

�e memory usage of the new framework is about 20% to 25%

higher as shown in Figure 6 due to the following two reasons. �e

framework was con�gured to load all the reads on all processes

to re�ect the behavior of the base case implementation to avoid

any in�uence on performance measurements. �is causes a steady

linear increase in overall memory usage for both systems as the

number of MPI processes is increased. In addition, the framework

also maintains placeholders for phred quality scores as discussed in

Section 5. Consequently, each read occupies a slightly larger space

in memory, contributing to the increased memory footprint.

�e experiments also indicate that the framework did not in-

troduce changes to the overall scalability or add overheads to the

communication calls performed by the clustering algorithms. Con-

sequently, the scalability and performance observed in Figure 5 is

merely an artifact of the clustering approach chosen for experimen-

tal assessment. Ergo behaviors of other algorithms would depend

on their charachteristics rather than those of the framework.

11 CONCLUSION
�e accelerated growth in throughput of NGS techniques has made

parallel clustering an indispensable step to analyze and further

process the reads. Clustering systems typically tend to be developed

as tightly coupled, monolithic systems which exacerbates their

extensibility and reusability. �is paper proposed a modular frame-

work (and not a speci�c clustering algorithm) that loosely couples

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20 25 30 35

R
u
n
ti

m
e
 (

se
co

n
d
s)

Number of MPI processes

Suffix ':PEACE' indicates data for
new framework while ':Base'
refers to earlier base case version
being used for comparisons.

R.Communis: PEACE
R.Communis: Base
A.Thaliana: PEACE

A.Thaliana: Base
C.Reinhardtii: PEACE

C.Reinhardtii: Base

Figure 5: Runtime comparison

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 5 10 15 20 25 30 35

To
ta

l
M

e
m

o
ry

 U
se

d
 (

K
B

)

Number of MPI processes

R.Communis: PEACE
R.Communis: Base
A.Thaliana: PEACE

A.Thaliana: Base
C.Reinhardtii: PEACE

C.Reinhardtii: Base

Figure 6: Total (sum on all processes) memory usage

Ab. Initio Clustering Extended version of short paper from ICSE’18, May 27–June 03 2018, Gothenburg, Sweden

components in various subsystems to construct a suitable so�-

ware pipeline for clustering. �e objective of the framework is to

not only ease design and implementation of any parallel cluster-

ing algorithms but also facilitate interoperability and reuse. �e

paper presented the design rationale and pa�erns used in core

framework, its four main subsystems, and the principal components

constituting the subsystems.

�e framework has been used to develop a variety of distance and

similarity based fragment analyzers along with several heuristics

used to improve overall clustering performance. �e operation

of �lter chains, analyzers, and dynamic composition of heuristics

into chains, was discussed. �e diversity in analyzers and the

�exibility of using �lters and heuristics provides ample evidence to

the comprehensive API provided by the framework. Furthermore,

an existing MST-based clustering algorithm has been incorporated

into the framework to compare and contrast its performance with

is monolithic predecessor.

�e comparative experiments performed using di�erent real

world data sets were presented to highlight that signi�cant enhance-

ments in overall quality of the so�ware can be achieved without

sacri�cing much performance through e�ective object-oriented

design. �e experiments indicate that the performance degradation

was less than 5% and the increase in memory footprint is about 25%.

However, with memory ge�ing cheaper, the increased memory

footprint is o�set by the bene�ts accrued. �e performance losses

primarily arose due to polymorphic calls involved in the API. �e

performance pro�les indicate that the depth of polymorphism did

not play a signi�cant role. However, with newer C++ standards

and compilers there is considerable promise that such issues will

continue to diminish in magnitude.

�e design of the PEACE framework has been developed over a

period of few years. �e design required several iterations involv-

ing many hours of meticulous pro�ling to ensure each API was

e�cient and it provided necessary features to be e�ectively used

at a system level. In other words, the design and development of

the API required considerable time and e�ort. Consequently, to

enable e�ective sharing and reuse the framework has been released

under the GNU General Public License (GPL). �e framework and

sample data sets are freely available for download from its web-

site at h�p://removed.for.review. We envision PEACE to serve as

a framework and testbed to ease study, design, implementation,

interoperability, and use of clustering algorithms that further lead

to innovations and discoveries in biology and medicine.

REFERENCES
[1] S. Nagaraj, R. Gasser, and S. Ranganathan, “A hitchhiker’s guide to expressed

sequence tag (EST) analysis,” Brief Bioinformatics, Jan 2007. [Online]. Available:

h�p://intl-bib.oxfordjournals.org/cgi/content/abstract/8/1/6

[2] E. R. Mardis, “A decade�s perspective on DNA sequencing technology,” Nature,
vol. 470, pp. 198–203, Feb. 2011.

[3] S. Hazelhurst and Z. Liptk, “Kaboom! a new su�x array based algorithm for

clustering expression data,” Bioinformatics, vol. 27, no. 24, pp. 3348–3355, 2011.

[Online]. Available: h�p://bioinformatics.oxfordjournals.org/content/27/24/3348.

abstract

[4] Y. Wang, H. C. Leung, S. Yiu, and F. Y. Chin, “Metacluster 5.0: a two-round

binning approach for metagenomic data for low-abundance species in a noisy

sample,” Bioinformatics, vol. 28, no. 18, pp. i356–i362, 2012. [Online]. Available:

h�p://bioinformatics.oxfordjournals.org/content/28/18/i356.abstract

[5] A. Kalyanaraman, S. Aluru, S. Kothari, and V. Brendel, “E�cient clustering of

large EST data sets on parallel computers,” Nucleic Acids Res, vol. 31, no. 11,

pp. 2963–74, Jun 2003. [Online]. Available: h�p://nar.oxfordjournals.org/cgi/

content/full/31/11/2963

[6] G. Narzisi and B. Mishra, “Comparing de novo genome assembly: �e long and

short of it,” PLoS ONE, vol. 6, no. 4, p. e19175, 04 2011. [Online]. Available:

h�p://dx.doi.org/10.1371%2Fjournal.pone.0019175

[7] Omi�ed for Review, “Omi�ed for Review,” Nucleic Acids Research, vol. 38, no. 2,

Jun.

[8] S. Hazelhurst, “Algorithms for clustering expressed sequence tags: the wcd
tool,” South African Computer Journal, vol. 40, pp. 51–62, May 2008. [Online].

Available: h�p://www.cs.wits.ac.za/∼sco�/papers/sacj527.pdf

[9] C. More�i, A. �rasher, L. Yu, M. Olson, S. Emrich, and D. �ain, “A framework

for scalable genome assembly on clusters, clouds, and grids,” IEEE Transactions
on Parallel and Distributed Systems, vol. 23, no. 12, pp. 2189–2197, 2012.

[10] J. M. Smith, Elemental Design Pa�erns, 1st ed. Reading, MA: Addison-Wesley

Professional, 2012.

[11] P. Pacheco, An Introduction to Parallel Programming. Reading, MA: Morgan

Kaufmann, 2011.

[12] A. Ptitsyn and W. Hide, “CLU: a new algorithm for EST clustering,” BMC Bioin-
formatics, vol. 6 Suppl 2, p. S3, Jul 2005, [PubMed:16026600] [PubMed Cen-

tral:PMC1637039] [doi:10.1186/1471-2105-6-S2-S3].

http://removed.for.review
http://intl-bib.oxfordjournals.org/cgi/content/abstract/8/1/6
http://bioinformatics.oxfordjournals.org/content/27/24/3348.abstract
http://bioinformatics.oxfordjournals.org/content/27/24/3348.abstract
http://bioinformatics.oxfordjournals.org/content/28/18/i356.abstract
http://nar.oxfordjournals.org/cgi/content/full/31/11/2963
http://nar.oxfordjournals.org/cgi/content/full/31/11/2963
http://dx.doi.org/10.1371%2Fjournal.pone.0019175
http://www.cs.wits.ac.za/~scott/papers/sacj527.pdf
http://www.ncbi.nlm.nih.gov/pubmed/16026600
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637039
http://dx.doi.org/10.1186/1471-2105-6-S2-S3

	Abstract
	1 Introduction
	2 Background
	3 Related Research
	4 Core PEACE Framework
	5 The Input Subsystem
	6 The Filtering Subsystem
	7 The Clustering Subsystem
	8 The Output Subsystem
	9 MST-based Clustering
	10 Experiments
	11 Conclusion
	References

