	DUE DATE:
	FRI, NOV 9 2012 BY 5:00 PM (EST)

CSE-381: Operating Systems
Exercise #13
Max Points: 20

Note: If you are using your personal machine then prior to commencing work on this exercise, you may need to install XMing, Putty, and WinScp as illustrated in LinuxEnvironment.pdf (and shown in the videos in the Handouts folder).

	Objective: The objective of this exercise is to:
· Use std::async and std::promise to streamline a multi-threaded code
· Observe automatic multi-threading capabilities of algorithm methods in C++

Submission: Save this MS-Word document using the naming convention MUid_Exercise13.docx prior to proceeding with this exercise. Upload the following at the end of the lab exercise:
1. This MS-Word document saved with the convention MUid_Exercise13.docx.
2. Program developed in his exercise named with the convention MUid_Ex13.cpp.

You may discuss the questions with your instructor.

Preliminaries

1. Log onto the Linux server for this course via the following steps (that were covered in the previous exercises and as illustrated in the LinuxEnvironment.pdf):
i. Run the X-Server Xming.
ii. Use PuTTY to log into the Linux server cse381-f12.csi.muohio.edu.
iii. When you log onto the server, you will be presented with a shell ($) prompt. You need to perform various tasks by typing commands at the shell prompt and pressing the ENTER () key.
iv. Start emacs and ensure you see the graphical screen for emacs.

Part #1: Using std::async and std::promise instead of threads [10 points]
Estimated time to complete: 35 minutes

Background
Many real-world examples can significantly gain performance using straightforward multi-threading strategies. Such applications that are amenable to straightforward multi-threading can be broadly classified into two main categories, namely: data parallel application and task parallel applications. Data parallel application benefit from multi-threading by permitting each thread to perform the same task but on a distinct subset of data. On the other hand, task parallel applications benefit from multi-threading by permitting different threads to perform different tasks on shared/same data.

Shortcoming: Immaterial of the type of application being multi-threaded, some level of synchronization of various threads is necessary to facilitate interactions with operators and coordinate results with other programs. Such interactions can be accomplished using shared data protected via semaphores or monitors. However, the task of establishing and managing a critical section is delegated to the programmer and can prove to be cumbersome, particularly in the case of task parallel applications.

Solution: The C++ standard library includes additional constructs that provide a convenient mechanism to perform asynchronous operations on independent threads, namely std::async and std::promise that are designed used in the following scenarios:

· std::async: This construct is primarily used when just the return value from a method is to be obtained. This method returns an std::future object that can be queried (via its get() method) to obtain the result from the asynchronous call later in the program.
· std::promise: Promise is an object that provides additional capability to set a value in the promise. This value can be obtained by a different thread via a suitable std::future object. This construct is primarily used when a value (that is not a return value of a method) is to be communicated from one thread to another.

Exercise
In this exercise you are expected to complete a given program to use std::async and std::promise instead of threads and monitors in the following manner:

1. Download the given exercise13.cpp and save the program to the Linux server using the convention MUid_Ex13.cpp (where MUID is your Miami University unique ID) and briefly review the incomplete skeleton code given to you.

2. Next, complete the isInfluential() method using the comments associated with the method in the given skeleton code.

3. Next, complete the isPrimordial() method using the comments associated with the method in the given skeleton code.

4. Test your program to ensure your implementation generates the following outputs (user inputs are shown in red):
	$ g++ -std=c++0x -Wall exercise13.cpp -o exercise13 –lpthread
$./exercise13
Enter a number (0 to exit): 40538689
Is the number 40538689 prime?: false
Is the number 40538689 influential?: true
Is the number 40538689 primordial?: true
Enter a number (0 to exit): 9
Is the number 9 prime?: false
Is the number 9 influential?: false
Is the number 9 primordial?: true
Enter a number (0 to exit): 6053
Is the number 6053 prime?: true
Is the number 6053 influential?: false
Is the number 6053 primordial?: false
Enter a number (0 to exit): 6833
Is the number 6833 prime?: true
Is the number 6833 influential?: true
Is the number 6833 primordial?: false
Enter a number (0 to exit): 0

5. Now that you have implemented the reference implementation that uses threads and monitors, it is time to streamline the main() method by suitably using std::async and (std::promise if needed) class. The requirements for the streamlined version are:
a. The program must not have any use of std::thread class
b. The program must not have any monitors (std::condition_variable) or semaphores (std::mutex) or std::atomic objects.
6. Test your program to ensure your implementation generates the same outputs as the base case outputs shown earlier.
	
Part #2: Observe behaviors of compiler optimizations [7 points]
Estimated time to complete: 30 minutes

Background
The C++ Standard Library implementation provided with the free GNU C++ compiler called libstdc++) also provides a “parallel mode". Using this mode enables existing serial code to take advantage of many parallelized algorithms that enables effective use of multi-core processors or multi-CPU machines which are common these days. The parallel mode operations can be enabled in the following two ways:

1. Implicit mode: In this mode compiler flags (namely: -fopenmp -D_GLIBCXX_PARALLEL) are used to implicitly enable use of parallel mode of operation whenever possible. The implicit mode does not require any changes to the program. The compiler and standard library use heuristics to decide if an algorithm should be run in parallel. Consequently, some of the algorithms may not be run in parallel mode.

2. Explicit mode: In this mode, the programmer selectively changes parts of the program to explicitly invoke parallel versions of various algorithms as shown in the sample code below. However, the –fopenmp flag is still needed to ensure the necessary parallel libraries are suitably linked with the generated executable.

	Serial Code
	
	Parallel Code

	
#include <algorithm>

void benchmark(std::vector<int>& numList,
 const int ListSize) {
 numList.resize(ListSize, -1);
 std::generate(numList.begin(),
 numList.end(), rand);
 std::sort(numList.begin(),
 numList.end());
}
	
	
#include <parallel/algorithm>

void benchmark(std::vector<int>& numList,
 const int ListSize) {
 numList.resize(ListSize, -1);
 std::__parallel::generate(numList.begin(),
 numList.end(), rand);
 std::__parallel::sort(numList.begin(),
 numList.end());
}

Exercise:
The objective of this exercise is to explore the impact of enabling automatic, implicit parallelism mode of C++ standard algorithms in the following manner:

1. Download the supplied benchmark.cpp and save program to the Linux server and briefly review the operation of the program. The program uses a straightforward method for benchmarking. This method generates a given number of random numbers and sorts them. The objective is to perform a sufficiently sizable amount of CPU operations so that the time difference between serial and parallel mode of operations can be measured with sufficient accuracy to perform statistically significant comparisons.

2. Base case measurement: First the time required to run the supplied benchmark.cpp using standard serial (not multi-threaded) versions of the algorithms will be measured. Compile and run the given benchmark.cpp (without any changes to the source code) program using the standard set of compiler options as shown below:

	$ g++ -std=c++0x -Wall bencharmk.cpp -o benchmark

3. Linux provides a time utility to measuring the time taken to run a program that can be used as shown in the sample output below (the actual timings you observe will be different and that is to be expected):
	$ /usr/bin/time ./benchmark
6.68user 0.01system 0:06.70elapsed 99%CPU (0avgtext+0avgdata 19040maxresident)k
0inputs+0outputs (0major+1305minor)pagefaults 0swaps

	
Each time a program is run, the actual time taken to run the program will vary depending on the load and other activities occurring on the system. Consequently, on multi-user, multi-tasking systems timing measurements have to be repeated in order to ensure that consistent timings are obtained and the consistent timings are averaged to obtain a suitable runtime value.

Using the /usr/bin/time command shown above, run the given program without any modifications three times (such that the timings are reasonably consistent) and note the timings in the table below:

	Timings from serial version of benchmark

	Observation #1
	Observation #2
	Observation #3

	Elapsed Time (sec)
	%CPU
	Elapsed Time (sec)
	%CPU
	Elapsed Time (sec)
	%CPU

	
	
	
	
	
	

4. Test case measurement: Now that the time for serial version of the standard C++ algorithm calls have been established, the next step is to use the implicit parallelism approach to automatically multi-thread the given benchmark program and measure the effectiveness of multi-threading the program. Compile and run the given benchmark.cpp (without any changes to the source code) program using the revised set of compiler options (that enable implicit parallel mode for standard C++ algorithms) as shown below:

	$ g++ -fopenmp -D_GLIBCXX_PARALLEL -std=c++0x -Wall bencharmk.cpp -o benchmark

5. Using the /usr/bin/time command used earlier, run the given program compiled with implicit parallelism enabled, three times (such that the timings are reasonably consistent) and note the timings in the table below:

	Timings from implicit multi-threaded version of benchmark

	Observation #1
	Observation #2
	Observation #3

	Elapsed Time (sec)
	%CPU
	Elapsed Time (sec)
	%CPU
	Elapsed Time (sec)
	%CPU

	
	
	
	
	
	

6. Based on the timings from the two version of the same program answer the following questions:
a. Which version of the program has a lower average elapsed time? Show average elapsed times for the two versions and the difference in elapsed times as well.
	

b. Which version of the program has a lower average %CPU? Show average %CPU for the two versions and the difference in %CPU as well.
	

c. Using the difference in average elapsed time and average %CPU which version of the program seems to be performing better? Record your inferences in the space below and provide suitable explanation in support of your interference.
	

Part #3: General (independent of multi-threading) compiler optimizations
Estimated time to complete: 15 minutes

Background
Similar to most C++ compilers, the Gnu C++ compiler (g++) provide a wide variety of optimizations that can be used to optimize the binary executable generated by the compiler. The optimizations that the compiler can perform are broadly classified into the following two dominant categories:

· Static (standard) optimizations: These optimizations are performed by the compiler by statically analyzing the program and suitably restructuring the generated instructions such that the desired functionality is accomplished in shorter time. Such optimizations are performed by most compilers to improve overall performance of the generated binary code. Some of the optimizations come at the price of increased binary-executable size and difficulty in debugging programs (as instructions may be reordered or possibly completely eliminated). However, these optimizations are absolutely critical as they can provide significant performance improvements and are always used before an application released for general use.
· Profile-driven Optimizations: These optimizations are performed in an iterative manner by the compiler. When a program runs, it gathers information about the behavior of the program and writes its runtime “profile” data to a file. Once the profile has been generated, the program must be recompiled and the compiler uses the profile information to further tune the operation of the program based on the runtime characteristics of the program recorded in its “profile”.

Exercise:
The objective of this exercise is to explore the impact of enabling standard compiler optimizations to the given benchmark.cpp C++ program. In this exercise, implicit parallelism will not be used merely to isolate the effectiveness of compiler optimizations. However, note that compiler optimizations and implicit parallelism are meant to be used together as a single team of options to push performance of C++ programs to the max!

1. In this exercise, the base case timing measurements gathered in the Part #2 of this exercise will be reused to determine the overall effectiveness of compiler optimizations.

2. Test case measurement: Compile the program using the –O3 compiler flag and run the given benchmark.cpp (without any changes to the source code) program using the revised set of compiler options (that enable static compiler optimizations) as shown below:

	$ g++ -O3 -std=c++0x -Wall bencharmk.cpp -o benchmark

3. Using the /usr/bin/time command used earlier, run the given program compiled with implicit parallelism enabled, three times (such that the timings are reasonably consistent) and note the timings in the table below:

	Timings from optimized (-O3) version of benchmark

	Observation #1
	Observation #2
	Observation #3

	Elapsed Time (sec)
	%CPU
	Elapsed Time (sec)
	%CPU
	Elapsed Time (sec)
	%CPU

	
	
	
	
	
	

4. Based on the timings from the two version of the same program answer the following questions:
a. [bookmark: _GoBack]Which version of the program (with vs. without compiler optimizations) has a lower average elapsed time? Show average elapsed times for the two versions and the difference in elapsed times as well.
	

b. Which version of the program (with vs. without compiler optimizations) has a lower average %CPU? Show average %CPU for the two versions and the difference in %CPU as well.
	

c. Using the difference in average elapsed time and average %CPU which version of the program (with vs. without compiler optimizations) seems to be performing better? Record your inferences in the space below.
	

Part #4: Submit files to Niihka
Upload just the following files to Nihhka:
1. This MS-Word document saved with the convention MUid_Exercise13.docx.
2. Program developed in Part #1 named with the convention MUid_Ex13.cpp.
	Page 8 of 8

