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Abstract. The design of a Time Warp simulation kernel is made dif-
ficult by the inherent complexity of the paradigm. Hence it becomes
critical that the design of such complex simulation kernels follow esta-
blished design principles such as object-oriented design so that the im-
plementation is simple to modify and extend. In this paper, we present a
compendium of our efforts in the design and development of an object-
oriented Time Warp simulation kernel, called WARPED. WARPED is a pu-
blically available Time Warp simulation kernel for experimentation and
application development. The kernel defines a standard interface to the
application developer and is designed to provide a highly configurable en-
vironment for the integration of Time Warp optimizations. It is written
in C++, uses the MPI message passing standard for communication, and
executes on a variety of platforms including a network of SUN worksta-
tions, a SUN SMP workstation, the IBM SP1/SP2 multiprocessors, the
Cray T3E, the Intel Paragon, and IBM-compatible PCs running Linux.

1 Introduction

The Time Warp parallel synchronization protocol has been the topic of research
for a number of years, and many modifications/optimizations have been propo-
sed and analyzed [1,[2]. However, these investigations are generally conducted in
distinct environments with each optimization re-implemented for comparative
analysis. Besides the obvious waste of manpower to re-implement Time Warp
and its affiliated optimizations, the possibility for a varying quality of the im-
plemented optimizations exists.

The WARPED project is an attempt to make a freely available object-oriented
Time Warp simulation kernel that is easily ported, simple to modify and extend,
and readily attached to new applications. The primary goal of this project is to
release an object-oriented software system that is freely available to the research
community for analysis of the Time Warp design space. In order to make WARPED
useful, the system must be easy to obtain, available with running applications,
operational on several processing platforms, and easy to install, port, and extend.

This paper describes the general structure of the WARPED kernel and pre-
sents a compendium of the object-oriented design issues and problems that were
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required to be solved. In addition, a description of two distinct application do-
mains for WARPED is presented. WARPED is implemented as a set of libraries from
which the user builds simulation objects. The WARPED kernel uses the MPT [3]
portable message passing interface and has been ported to several architectures,
including: the IBM SP1/SP2, the Cray T3E, the Intel Paragon, a network of
SUN workstations, an SMP SUN workstation, and a network of Pentium Pro
PCs running Linux.

The WARPED system is implemented in C++ and utilizes the object-oriented
capabilities of the language. Even if one is interested in WARPED only at the
system interface level, they must understand concepts such as inheritance, vir-
tual functions, and overloading. The benefit of this type of design is that the
end user can redefine and reconfigure functions without directly changing ker-
nel code. Any system function can be overloaded to fit the user’s needs and
any basic system structure can be redefined. This capability allows the user to
easily modify the system queues, algorithms or any part of the simulation ker-
nel. This flexibility makes the WARPED system a powerful tool for Time Warp
experimentation.
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Fig. 1. A logical process in a Time Warp simulation

Another benefit of the object-oriented nature of the WARPED application in-
terface is that by its very design it is simple to “plug in” a different kernel. A
sequential simulation kernel is supplied in the WARPED distribution in addition
to the Time Warp kernel. Version 0.9 of the WARPED is available via the www
at http://www.ece.uc.edu/ paw/warped/. The remainder of this paper is or-
ganized as follows. Section [Z] presents a description of the Time Warp paradigm.
Section Bl details the WARPED kernel’s application/kernel interface and presents
a compendium of the design issues that were required to be solved for the deve-
lopment of the WARPED system. Section ] demonstrates, through two examples,
the construction of simulation applications using the WARPED kernel. Finally,
Sect. [B] contains some concluding remarks.
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2 Background

In a Time Warp synchronized discrete event simulation, Virtual Time [2] is used
to model the passage of the time in the simulation. The virtual time defines a
total order on the events of the system. The simulation state (and time) advan-
ces in discrete steps as each event is processed. The simulation is executed via
several simulator processes, called simulation objects or logical processes (LP).
Each LP is constructed from a physical process (PP) and three history queues.
Figure[Millustrates the structure of an LP. The input and the output queues store
incoming and outgoing events respectively. The state queue stores the state hi-
story of the LP. Each LP maintains a clock that records its Local Virtual Time
(LVT). LPs interact with each other by exchanging time-stamped event mes-
sages. Changes in the state of the simulation occur as events are processed at
specific virtual times. In turn, events may schedule other events at future virtual
times.

The LPs must be synchronized in order to maintain the causality of the
simulation; although each LP processes local events in their (locally) correct
time-stamp order, events are not globally ordered. Fortunately, each event need
only be ordered with respect to events that affect it (and, conversely, events
that it affects); hence, only a partial order of the events is necessary for correct
execution [4]. Under optimistically synchronized protocols (e.g., the Time Warp
model [2]), LPs execute their local simulation autonomously, without explicit
synchronization. A causality error arises if a LP receives a message with a time-
stamp earlier than its LVT (a straggler message). In order to allow recovery,
the state of the LP and the output events generated are saved in history queues
as events are processed. When a straggler message is detected, the erroneous
computation must be undone—a rollback occurs. The rollback process consists
of the following steps: the state of the LP is restored to a state prior to the
straggler message’s time-stamp, and then erroneously sent output messages are
canceled (by sending anti-messages to nullify the original messages). The global
progress time of the simulation, called Global Virtual Time (GVT), is defined
as the time of the earliest unprocessed message in the system [I], 5, []. Periodic
GVT calculation is performed to reclaim memory space as history items with a
time-stamp lower than GVT are no longer needed, and can be deleted to make
room for new history items.

3 The WARPED Application and Kernel Interface

The WARPED kernel presents an interface to the application from building logical
processes based on Jefferson’s original definition [2] of Time Warp. Logical pro-
cesses (LPs) are modeled as entities which send and receive events to and from
each other, and act on these events by applying them to their internal state.
This being the case, basic functions that the kernel provides to the application
are methods for sending and receiving events between LPs, and the ability to
specify different types of LPs with unique definitions of state. One departure
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class UserLogicalProcess
Kernel provides:
void sendEvent(UserEvent *);
bool haveMoreEvents(); class UserEvent
UserEvent *getEvent(); .
VTime *getSimulationTime(); Kemel provides:
Application UserState *getState(); void setReceiver(int);
I o ) void setReceiveTime(VTime *);
nterface Application provides:
void initialize(); Application provides:
void finalize(); SerializedInstance *serialize();
void executeProcess(); class UserState L *
UserState “allocateState(); . . deserialize(SerializedInstance *);
void deallocateState(UserState *); void copyState(UserState *);
_ class class KernelState class KernelEvent
KernelLogicalProcessinterface
void copyState(KernelState *); int getReceiver();
K 1 void initialize(); VTime "getReceiveTime();
I ernel void finalize();
nterface void executeProcess();
KernelState *allocateState(); class Kem9|0bjec1
void deallocateState(KernelState *);
void receiveUserEvent(KernelEvent *);
bool hasMoreEvents();
KemelEvent *giveCurrentEvent();
KernelState *getstate();

Fig. 2. Application and kernel interface

from Jefferson’s presentation of Time Warp is that LPs are placed into groups
called “clusters”. LPs on the same cluster communicate with each other without
the intervention of the message system, which is much faster than communi-
cation through the message system. Hence, LPs which communicate frequently
should be placed on the same cluster. Another feature of the cluster is that it is
responsible for scheduling the LPs. Note that the LPs within a cluster operate
as Time Warp processes; even though they are grouped together, they aren’t
coerced into synchronizing with each other.

Control is passed between the application and the kernel through the coo-
perative use of function calls. This means that when a function is called in
application code, the application is not allowed to block for any reason. Since
the application has control of the single thread of control through its cluster, it
could end up waiting forever. In order for the kernel to correctly interact with
the application code, the user must provide several functions to the kernel. These
functions define such things as how to initialize each LP, and what each LP does
during a simulation cycle. In addition, if the user would like to use a non-standard
definition of time, facilities are in place to provide a user-defined time class to
the kernel. By default, WARPED has a simple notion of time. More precisely, time
is defined in the class VTime as a signed integer. Obviously, particular instances
of an application may have different requirements for the concept of time. For
example, simulators for the hardware description language VHDL [7] require a
more complex definition of time. If the simple, kernel-supplied version of time
is not sufficient, the application programmer must define the class VTime with
data members appropriate to the application’s needs. In addition, the user must
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use the preprocessor macro USE_USER_VTIME during compilation. The WARPED
kernel also has requirements about the defined methods of the type VTime. Spe-
cifically, the implementation of VTime must supply the following operators and
data, either by default or through explicit instantiation:

Assignment (=), Addition (4), and subtraction (—) operators.

— The relational operators: ==, 1=, >= <=, >, <.

— Constant objects ZERO, PINFINITY, and INVALID_VTIME of type VTime, which
define, respectively, the smallest, largest, and invalid time values.
INVALID_VTIME must be less than ZERQO.

— The insertion operator (<<) for class ostream, for type VTime.

The application interface is implemented through the object-oriented features
of the C++ language. The simulation kernel is built from several classes, allowing
the user to define a system configuration by specifying the classes to use, without
rewriting system code. Application specific code is derived from the WARPED
kernel. This allows application code to transparently access kernel functions and
is restrictive enough to hide communication and Time Warp details from the
user. This section describes what is necessary for an application writer to provide
the WARPED kernel, and what the simulation kernel provides to the application
in return. To use the WARPED kernel, the application programmer must provide
three class definitions corresponding to the logical process (LP), the notion of
state for that LP, and a definition (or definitions) for events.

LPs form the core of the discrete event simulation. An LP represents an entity
that can send/receive events to/from other LPs. As a result of these events, chan-
ges are made to the LP’s internal state (and output may result). Figure Rlillust-
rates the application and the kernel interfaces presented by the WARPED system.
The interface as seen by an user’s LP is represented by the UserLogicalProcess
class definition. The class definition is divided into two parts. The first part is the
set of methods that the kernel provides to the LP. These methods are provided
by the kernel to the LP for communication (sendEvent, getEvent), querying the
kernel for information (haveMoreEvents, getSimulationTime) and for accessing
its state (getState). In addition to these methods, there are some internal me-
thods that the kernel calls periodically. These include message polling primitives
to check for the arrival of messages from remote processors and garbage collec-
tion primitives. The second part consists of a set of methods that the application
writer overrides. The kernel will call these methods at various times through out
the simulation. Each method in this set has a specific function. The initialize
method gets called on each LP before the simulation begins. This gives each LP
a chance to perform any actions required for initialization. For example, initia-
lization might include opening files, setting up the initial state of an LP or the
transmission of initial setup events to the distributed processes in the simulation.
Conversely, the method finalize is called after the simulation has ended. This
allows the LPs to “clean up” after themselves, perform actions such as closing
files, compute statistics, and produce output. The method executeProcess of
an LP is called by the kernel whenever the LP has at least one event to process.
The kernel calls allocateState in an LP when it needs the LP to allocate a
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state on its behalf. deallocateState is called by the kernel to hand back a state
to the application when it is done with it. At this point, the application may
deallocate it, or store it for later use.

Any LP will have some state that needs to be defined. The LP modifies its
state in response to various events that it receives. This behavior is completely
user application specific and the application must define certain methods related
to state for the simulation kernel to call. These methods include the creation and
the duplication of the state. Figure 2] illustrates the user application’s interface
to the state. The method copyState is called by the kernel to copy the data from
the UserState into a newly created state which is then archived (for rollback
recovery purposes). This method must be overridden by the user application.
If the application’s definition of state contains no pointers, then a bitwise copy
is adequate for this method. If the application contains pointers in its state, or
objects that contain pointers, then this method has to take appropriate actions
to copy the pointers “correctly”, as defined by the needs of the application. This
is necessary because the kernel has no knowledge about the user application’s
state.

Events represent the communication between the LPs. Figure Pl illustrates
the definition of the UserEvent class. Once again, the definition is a two part
definition wherein one set of methods is provided by the kernel and the other set
is overridden by the application writer. The method setReceiver allows the ap-
plication to set the simulation id of the receiving LP []. setReceiverTime allows
the application to set the simulation time that this event should be received at.
The methods serialize and deserialize are provided so that the application
may maintain architectural transparency and portability among events. It is also
necessary for checkpointing in optimistic fossil collection [§] and failure recovery.

The design of the WARPED API was motivated by several design issues. These
issues were central to the object-oriented design of the system and needed to
be solved for constructing a simple and extensible programming interface. For
example, when the kernel needs information about data structures within the
application, they can be passed into the kernel in two ways : through template
classes or through virtual interface methods. One example of this is the state
class definition. The user state can be passed into the kernel through templates.
All that is required is that the UserLogicalProcess class be templatized on
UserState. However, to reduce overall compilation time, static executable size
and facilitate the use of different types of states, the templatization approach
was avoided. The convention currently followed is to have the LP and the kernel
share the responsibility of allocating, maintaining and deallocating the state
through the use of virtual methods. Although the common perception in scientific
computing is that abstraction is the enemy of performance, we have found that
the extensive use of virtual methods and other abstractions does not drastically
affect performance. When kernel data or functions need to be made available
to the user, they can be accessed by one of two mechanisms: through the C++

1 As it is the user’s responsibility to register an LP with a unique simulation id, the
application can use the setReceiver method to connect LPs together.
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inheritance mechanism (classes that the user defines must be derived from kernel
defined classes), and through “normal” function calls to methods defined by
objects in the WARPED kernel.

In addition, avoiding the use of templates facilitates the distribution of source
code as stand alone libraries which do not require recompilation. This enables the
development of “object factories” by independent vendors. With object factories,
vendors can permit different users to use various components from their object
factories without revealing the source code. To enable this type of “plug-and-
play”, C++ composition was carried out in preference to inheritance in the
source code. Composition also helps in achieving dynamic algorithm/method
reconfiguration (i.e., reconfiguration “on-the-fly” without recompilation).

Also, avoiding the use of templates makes the WARPED system simpler to
port to different compilers on different architectures. To achieve interoperabi-
lity on heterogeneous platforms, the serialization and deserialization operations
play a vital role. Currently serialization and deserialization of events as well as
states is supported. These operations are invoked only when events or states
cross architecture boundaries. Serialization and deserialization is also applied to
checkpointing to facilitate failure recovery.

In the current version of WARPED, there are several Time Warp implemen-
tation optimizations that can be turned on/off. A configuration file is used to
allow the user to change between the options of the simulation kernel at com-
pile time. These options fall under several broad categories: Schedulers, Fossil
Managers, State Managers, Memory Managers, and Time Warp optimizations
(such as dynamic cancellation [9], dynamic checkpointing [T0] and dynamic mes-
sage aggregation [I1]). The user specifies a selection from this set of options
and compiles this selection. A better way to implement this is through dynamic
configuration. Each optimization is implemented as a specific function and at
run-time, a simulation object (or some central configuration object) can dyna-
mically select and reconfigure (through function pointers) the optimization and
switch between optimizations if the need arose [12].

4 Applications for WARPED

Several applications have already been developed that use the WARPED kernel.
These applications primarily belong to two application domains: a queuing model
simulation library called KUE, and TYVIS, a simulation kernel for the VHDL
hardware description language [7]. KUE is a simple package developed for de-
bugging, testing, and initial profiling of WARPED and any extensions thereof.
TYVIS is a larger package designed to stress the simulation kernel with large
examples of digital systems. It also demonstrates the extensibility of the WARPED
kernel. The developers hope that other investigators will implement additional
applications with WARPED which they can include as part of the distribution.
As space constraints prevent us from presenting the performance of the WAR-
PED system, the rest of this section is devoted to the description of WARPED
applications.



20 R. Radhakrishnan et al.

4.1 KUE: A Queuing Model Library

The KUE system is a library of queuing models built on top of the WARPED
kernel. KUE is a set of C++ classes that enable the creation of parallel queuing
applications. XKUE is a TCL/TK front end for queue to allow “point and
click” creation of queuing models. The KUE library contains class definitions
of seven different queuing objects (source, fork, join, delay, queue, server and
sink objects). Each object class definition encapsulates the functionality of the
queuing object in accordance with the WARPED interface. Two examples are
distributed with the WARPED kernel that make use of the KUE libraries.

The first, SMMP, is designed to simulate several processors, each with their
own cache, and sharing a global memory. The model is generated by a pro-
gram which lets the user adjust the following parameters: the number of proces-
sors/caches to simulate, the number of LPs to generate, the speed of cache, the
speed of main memory, and the cache hit ratio. The second example, RAID, is
a simulation of a nine disk RAID level 5 array of IBM 0661 3.5” 320MB SCSI
drives with a flat-left symmetric parity placement policy. Sixteen processes ge-
nerate requests for data stripes of random lengths and locations. These requests
are sent to fork processes which split them into specific disk-level requests accor-
ding to the RAID placement policy. The nine server processes, one per simulated
disk, process the requests in a first-come first-served fashion. After processing
each request, the disks route their responses back to the originating processes.
Both these sample queuing applications posses class definitions that derive from
the seven basic queuing model definitions in the KUE library. Further details
regarding these applications are available in the literature [12].

4.2 TvYVIS: A Parallel VHDL Simulation Kernel

The TyVIS VHDL simulation kernel was designed to take advantage of the
object-oriented design of the WARPED kernel. It requires no modifications to the
kernel, yet extends WARPED with full VHDL simulation capability (as described
in [7]). Its implementation takes advantage of several design features of WAR-
PED, and even reuses some of WARPED’s basic classes for TYVIS’s internal data
structures. The main class of TYVIS is VHDLKernel, which is derived from the
UserLogicalProcess class.

The semantics of VHDL require that certain events generated during a simu-
lation cycle not be applied to a signal’s value, based upon each event’s timestamp.
This process is called marking, and is best implemented with a time-ordered
queue. Rather than writing an entirely new data structure, the OutputQueue
class of the WARPED distribution was reused, becoming a base class for the
MarkedQueue class. The public interface to MarkedQueue is identical to that of
OutputQueue; all additional data members and methods are private. This reuse
of the existing code allowed the MarkedQueue class to be written and debugged
in a matter of a few hours. Also, since MarkedQueue only accesses the public
interface of OutputQueue, any changes in the implementation of OutputQueue
will be transparent.
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Fig. 3. A synopsis of WARPED’s class derivation hierarchy

Each VHDL process has a unique state class which defines the VHDL signals
and local variables that the process can access. This state class is built from
WARPED’s UserState class with the necessary user-defined methods. This allows
the Time Warp functions of state queuing, rollbacks, and garbage collection to
proceed normally. The only requirement to the state class for this is that the
class define operator=.

Processes are invoked by calling VHDLKernel: :executeProcess(), which
overrides the similar method in the UserLogicalProcess class. This method
updates LVT and applies all events in the input queue occurring on any signals
contained in the process at the current time. The specific VHDL process code is
then executed by calling the object’s executeVHDL method, supplied by the user.
When the process returns control to the VHDL kernel, the kernel then determi-
nes which newly generated events need to be transmitted to other processes, and
transmits them, using the sendEvent call from the WARPED kernel. Eventually,
control is returned to WARPED. If a process is rolled back, the VHDL kernel never
knows about it, since all related processing is contained entirely in the WARPED
code, lower down in the derivation hierarchy. Complete replacement of the WAR-
PED kernel with a conservatively synchronized simulation kernel would have no
effect on TYVIS; it is completely isolated from whatever processing is performed
by WARPED. A synopsis of the WARPED class derivation tree is illustrated in Fig.
Bl Base class definitions form the root of the derivation hierarchy. Figure Bl also
depicts the WARPED classes reused by the TYVIS VHDL simulation kernel.
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5 Conclusions

The WARPED Time Warp simulation project is an attempt to produce a widely
available, highly portable, and an object-oriented Time Warp simulation kernel
complete with operational applications for testing and analysis. The software
is written in C++ and uses the MPI portable message passing interface. The
system operates on a distributed or shared memory multiprocessor as well as
on a network of workstations. Several applications have been developed and are
jointly released with the software.

The intent of this effort is to make a testbed available for experimentation
and analysis of Time Warp and all its affiliated optimizations. For this purpose,
an object-oriented design approach has been followed with the aim of making
the software easy to extend. Our experiences in the design and development of
WARPED were also presented. In addition, a synopsis of the application program-
ming interface of WARPED was also presented. We hope that as investigators use
and extend the capabilities of the kernel that we will be allowed to integrate
those extensions into the basic kernel release so that others can likewise benefit
from, and independently confirm, the analysis of the extensions. Furthermore,
we expect that additional test cases for the existing (and ideally, new) applicati-
ons will be independently developed and submitted for inclusion into the kernel
release (and thereby promoting reuse of source code).
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