
Modeling and Simulation of Active Networks*

Dhananjai M. Rao and Philip A. Wilsey
Experimental Computing Laboratory

Dept. of ECECS, PO Box 210030, Cincinnati, OH 45221-0030.
dmadhava@ececs.uc.edu,philip.wilsey@uc.edu

Abstract

Active networking techniques embed computational ca-
pabilities into conventional networks thereby massively in-
creasing the complexity and customization of the compu-
tations that are performed with a network. In depth stud-
ies of these large and complex networks that are still in
their nascent stages cannot be effectively performed using
analytical methods. Hence, discrete event simulation tech-
niques are the only viable means to study and analyze active
networking architectures. Furthermore, customized and
jlexible tools are required to for the analysis of active net-
works using simulation. This paper describes an integrated
environmentfor the modeling and parallel simulation of ac-
tive networks called Active Networks Simulation Environ-
ment (or ANSE). ANSE utilizes the Time Warp synchro-
nized kernel of WARPED (a general purpose discrete event
simulation kernel) to enable parallel simulation of active
network models. ANSE also includes complete support for
the modeling and simulation of active networks based on
PLAN (Packet Language for Active Networks). This paper
presents the issues involved in the design and development
of ANSE. The Application Programming Interface (API) of
ANSE is presented along with the issues involved in utiliz-
ing it to develop support for PLAN based active networks.
The paper also presents some results obtained from the sev-
eral experiments conducted to evaluate the effectiveness of
ANSE. Our studies indicate that ANSE provides an effec-
tive environment for modeling and simulation of large scale
active networks.

1 Introduction

Techniques to effectively utilize the computational and
communication infrastructure of modern networks has lead
investigators to develop active networking architectures. In
an active network, the nodes constituting the network are

'Suppon for this work was provided in pan by the Advanced Research
Projects Agency under contract DABT63-96-C-0055.

capable of performing customizable general purpose pro-
cessing (or services) on the datagrams flowing through
them [1,7]. Active networking techniques enable a massive
increase in the complexity and customization of network-
ing services. Active networking techniques also encompass
conventional networking architectures and protocols [11.
Unfortunately, traditional analytical methods cannot be ef-
fectively used for studying active networks [8]. Hence, em-
pirical methods must be employed. Simulation, discrete
event simulation in particular, has proven to be an effec-
tive tool to study conventional networks and is also the only
method available for analyzing active networks [S, 7, 101.

Model development, verification, and validation plays a
critical role in simulation studies. Without sufficient verifi-
cation and validation (V&V) little confidence can be placed
in the results obtained from a simulation [9]. The network
models should reflect the size and complexity of actual net-
works in order to ensure that crucial scalability issues do not
dominate during validation of simulation results. Model-
ing and simulation of large networks can involve extremely
long run times on sequential machines. Consequently, so-
phisticated parallel simulation must be employed to sim-
ulate large models in reasonable time frames [7, 101. To
assist in modeling and simulation of active networks, we
have developed a tool called the Active Networks Simula-
tion Environment (or ANSE). ANSE provides a hierarchi-
cal modeling language that can be used to develop network
models represented as a set of interconnected nodes (or net-
working components) developed using ANSE's Applica-
tion Program Interface (API). The API fully insulates the
application modules from the underlying simulation kernel.
The API has been used to develop a library of components
that can be used to model active networks based on PLAN,
a Packet Language for Active Networks. The simulation in-
frastructure of ANSE utilizes the Time Warp synchronized
kernel of WARPED (a general purpose discrete event sim-
ulation kernel [4]) to enable parallel simulation of active
network models.

This paper presents the issues involved in the design and
development of ANSE. Section 2 presents brief description

177
0-7695-1092-2/01 $10.00 0 2001 IEEE

1 overviewof

I Fl
Library

I b

intermediate
TSL Parser Formal

(TSL) (TSL-IF)

Network Model

Elaborator

Figure 1. Overview of ANSE

of WARPED, the simulation kernel utilized by ANSE. In
Section 3 an overview of ANSE and its various compo-
nents are presented. The unified modeling front-end and
ANSE’s API are also presented in this section. The issues
involved in the design and development of support for mod-
eling and simulation of active networks based on PLAN is
presented in Section 3.5. Section 4 presents results from
several experiments conducted using ANSE. Finally, con-
cluding remarks and pointers to future work are presented
in Section 5.

2 Background

The parallel simulation capabilities of ANSE have been
enabled by developing the framework around a general pur-
pose discrete event simulation engine. Object oriented (00)
techniques have been employed to isolate the various mod-
ules of ANSE from the underlying simulation kernel. This
design not only provides a desired level of “separation of
concerns” but also enables the use of different simulation
kernels without modification to the application modules.
The current implementation of ANSE utilizes the WARPED
simulation kernel [4] to enable sequential and parallel sim-
ulation of active network models. WARPED is an Applica-
tion Program Interface (API) for a general purpose discrete
event simulation kernel with different implementations [4].
ANSE utilizes the sequential kernel and the Time Warp
based parallel simulation kernel of WARPED.

The parallel simulation implementation in WARPED uses
the Time Warp optimistic synchronization strategy [3]. A
Time Warp synchronized parallel simulation is organized as
a set of asynchronously communicating logical processes
(LPs). The LPs communicate between each other by ex-
changing virtual time-stamped event messages [3]. Each LP
processes its events maintaining a local virtual time (LVT),
changing its state, and generating new events without syn-
chronization concerns to other LPs. Although each LP pro-

cesses local events in their correct time-stamp order, events
are not globally ordered. Causal violations may occur due
to the optimistic nature of Time Warp. Causality violations
are detected by a LP when it receives an event with time-
stamps lower than its LVT (called a struggler event). On
receiving a straggler, a rollback mechanism [3] is invoked
to recover from the causality error. The rollback process
recovers the LP’s state prior to the causal violation, cancel-
ing the erroneous output events generated by sending out
anti-messages, and re-processing the events in their correct
causal order [3:1. Each LP maintains a list of state transi-
tions along with lists of input and output events correspond-
ing to each state to enable the recovery process. A periodic
garbage collection technique based on Global Virtual Time
(GVT) [3] is used to prune the queues by discarding history
items that are no longer needed.

The WARPEI) kernel presents an interface to build logi-
cal processes based on Jefferson’s original definition [3] of
Time Warp [4]. The kernel provides an API to build dif-
ferent LPs with unique definitions of state [4]. The basic
functionality for sending and receiving events between LPs
using a message passing system is supported by the kernel.
In WARPED, LPs are placed into groups called “clusters”.
LPs on the same cluster communicate with each other with-
out the intervention of the message passing system, which is
faster than communication through the message system [4].
Although LPs are grouped together into clusters they are not
coerced into synchronizing with each other. Control is ex-
changed between the application and the simulation kernel
through cooperative use of function calls.

3 The Active Networks Simulation Environ-
ment (ANSE)

ANSE was developed to ease modeling and simulation
of active networks. An overview of ANSE is presented in

178

Figure 1. As shown in Figure 1, the primary input is the
topology of the network model to be simulated. The syntax
and semantics of the input topology is defined by the Topol-
ogy Specification Language (TSL). TSL provides simple,
yet robust, hierarchical modeling techniques for represent-
ing a network as a set of interconnected componentslnodes.
The components used in the TSL description are developed
using ANSE’s API. As illustrated in Figure 1, the input net-
work model is parsed into an object-oriented in-memory in-
termediate format (TSL-IF). An elaboration module is used
to elaborate or “flatten” a hierarchical network model. Elab-
oration is performed to ease further processing of the net-
work model. TSL-IF is used to represent the elaborated
network model. As shown in Figure 1, a back-end code-
generator utilizes the elaborated network model to gener-
ate ANSE API compliant (C++) code. The generated code
is compiled and linked with necessary libraries such as the
WARPED library, ANSE library, PLAN library, and other
user-defined libraries (as the case maybe) to obtain the final
executable. The final executable performs the actual simu-
lation when it is run. A detailed description of the various
modules constituting ANSE is presented in the following
subsections.

3.1 Topology Specification Language (TSL)

The primary input to ANSE (as shown in Figure 1) is the
topology of the network to be simulated is provided to the
environment in Topology Specification Language (TSL) [5]
syntax. The Backus Normal Form (BNF) of TSL gram-
mar is shown in Figure 2. As specified by the grammar, a
TSL specification consists of a set of interconnected topol-
ogy specifications. Each topology specification consists of
three main sections, namely; (i) the object dejinition section
that contains the details of the modules that need to be used
to simulate the topology; (ii) the object instantiation section
that specifies the various nodes constituting the topology;
and (iii) the netlist section that defines the interconnectivity
between the various instantiated nodes. Figure 3.1 presenls
a network model along with the corresponding TSL descrip-
tion. An optional label may be associated with each topol-
ogy. The label may be used as an object definition in sub-
sequent topology specifications to nest a topology within
another. In other words, the labels, when used to instantiate
an object, result in the complete topology associated with
the label to be embedded within the instantiating topology.
Figure 3.1 presents the TSL source code to model a larger
network using hierarchical constructs. As illustrated by the
figure, the model of the network is specified by intercon-
.netting three instances of the network model shown in Fig-
ure 3.1. Using this technique, a simple sub-network consist-
ing of merely ten nodes can be recursively used to construct
a network with six levels of hierarchy to specify a network

designfile ::= includeJist tsl-design-topology I
includeiist ::= include-clause 1 includexlause include l is t
includexlause ::= include “ filemime ”;
file-name ::= identifier I identifier. identifier
tsl-network ::= tsl-topology 1 label tsl-topology I
tsl-topology ::= { objectdefinitionsection }

label ::= identifier
object-definitionsection ::= object definition 1

objectdefinition objectdefinition section
object-definition ::= objectname : url optional parameter
object-name ::= identifier
url ::= hostmime : portnumber. factory
optionalparameter ::= parameter ; I;
parameter ::= ‘‘ string ” 1‘“’
factory ::= identifier I identifier. factory
portnumber ::= number
objectinstantiationsection ::= objectinstantiation I

objectinstantiation object instantiation section
objectinstantiation ::=

objectinstance : objectname optional parameter 1
objectinstance : objectmime number optional parameter

tsl-design-topology

tsl-topology tslsetwork I label tsl -topology tsl network

{ objectinstantiationsection } { n e t h t s e c t i o n }

I objectinstance : label
objectinstance ::= identifier
netJist-section ::= netlist I netlist netiist-section
netAist ::= objectinstance : instanceiist ;
instancdist := objectinstance 1 objectinstance instancelist
identifier ::= start-char anyxhar
start-char ::= [a - z, A - Z]
any-char ::= [a - z, A - Z, 0 - 9, -1
string ::= string-char 1 string-char string
string-char ::= []
number ::= [0 - 91

Figure 2. BNF of TSL grammar

with million (lo6) nodes [7, 61. ANSE also include a tool
for translating Georgia Tech Internet Topology Models (GT-
ITM) [1 13 models into equivalent TSL descriptions. The
translation tool and GT-ITM can be used to automatically
generate network topologies in TSL.

3.2 TSL Parser

The input topology configuration is parsed using a parser
into an 00 TSL Intermediate Format (TSL-IF). The TSL
parser is generated using the Purdue Compiler Construc-
tion Tool Set (PCCTS) [7]. TSL-IF forms the primary in-
put to the other modules of ANSE. TSL-IF is designed
to provide efficient access to related data from the various
TSL sections [6]. In conjunction with the parser, TSL-IF

179

is also implemented in C++. The IF consists of a set of
cross-referenced classes, each class representing a particu-
lar grammar entity. The IF is composed by filling in the ref-
erences in the various C++ classes generated by the parser
with appropriate values. Since composition is achieved
via base class references, each node can refer to another
node or even a sub-network. This provides an efficient data
structure for representing and analyzing hierarchical net-
works [7, 61.

3.2.1 Static Elaborator

Hierarchical constructs provide convenient techniques to
specific large networks by reusing the specification for
smaller sub-networks [7, 61. However, the hierarchical con-
structs have to be elaborated or "flattened' prior to simula-
tion [7, 61. Elaboration is the process in which each hierar-
chical level is broken down to its constituting components.
The basic steps involved in elaborating a hierarchical spec-
ification are shown in Figure 4. As illustrated in the figure,
the elaborator starts with an user-specified topology and re-
cursively traverses the various sub-topologies in the model
and creates new instances of the sub-topologies and the ob-
jects. Elaboration of sub-topologies is done before they are
imploded into the enclosing topology. Imploding hierar-
chies involves inclusion of all necessary object definitions,
object instantiations, and corresponding data structures.
Elaboration may be done statically or at runtime. Static
elaboration occurs prior to code-generation while runtime
elaboration occurs just before simulation commences, when

SN (Ncdr : SnmpeNide;
Switch SimplrSwitch:)

' 9 it I

{ NI : Node; NZ : Node; N3 : Ncdr;
N4 : Node: NS : Node:

I > I
SI : Swtch;)

{ S l :NI NZ N3N4N5 NI;
NI:SI:NZ:SI:N3:SI;

Sample Network (SN)
r' * ? *< IS

N4:SI:NS:Sl)

TSL For SN

(1) Simple network

_ -

include "SN.lsl"
HN { rwkh : S m p l r S w I ~ h ;)

(S : Switch
SNI : SN; SN2 : SN; SN3 : SN; t

Y I < , c

[S : SNI SNZSN3; 1

_ I \

A Hierarchical Network (HN) ~ s ~ f ~ ~ HN

(2) Hierarchal network

Figure 3. Example Network models and TSL

step 1: Initialize elaborator
1. Initialize new symbol table and IF
2 . Search input IF and locate node corresponding to user

3. Call elaboration (step 2) with new topology
specified top level topology

step 2: Elaboration subroutine (parameter topology)
1. Process the list of netlists specified in the topology.

If the node is an object instantiation perform step 3. If
the node is a topology label perform step 4.

step 3: Elaborate object instantiation
1. Create new instance of the object instantiation with

mangled labels.
2. Create new object definition for the new instance with

mangled labels and add to new symbol table, if neces-
sary.

3. Add new object instantiation to the new topology and
update netlist entry.

step 4: Elaborate sub-topology
1 . Instantiate temporary symbol table and IF
2. Recursively call elaboration with the sub- topology
3. Implode new IF to the new topology

Figure 4. Phases in elaborating a TSL design

the generated code is executed. In ANSE, static elaboration
is performed with the TSL-IF generated by the parser and
the elaborated topology is also represented in TSL-IF (as
shown in Figure 1).

3.3 Code Generator

As shown in Figure 1, the back-end code-generator uti-
lizes the elaborated TSL-IF to generate a simulatable model
from the given TSL description. The generated code in
in C++ in concordance with all the other components of
ANSE. The 00 nature of TSL-IF has been exploited in
the development of the code-generator. The generated code
is compliant with the API of ANSE. A model developer
can directly develop the network model (compliant with
ANSE's API) and bypass these stages. However, the com-
plexity involved in model development would be consider-
ably higher. The back-end code-generator can be replaced
with a different code-generator in order to re-target the gen-
erated code for different frameworks.

3.4 ANSE API and Library

ANSE presents an interface to the application developer
for modeling a network as set of communicating logical
processes (LPs). The LPs are modeled as entities which
send and receive events to and from each other, and act

180

on these events by applying them to their internal state.
Figure 5 shows the Universal Markup Language (UML)
diagram for the core classes that constitute the API. As
illustrated in the figure, the NetworkNode class forms
the parent class for all the networking components in the
system. The ActiveNode and PLANNode are derived
from this class. The NetworkNode class is used to model
conventional networking components while the Ac t iveN-
ode is used to model active components. The Networ-
kNode also provides methods for accessing routing tables
and supports primitive domain name services (DNS). The
state (NetworkNodeS tate and Act iveNodeState)
and packet (Packet and Activepacket) classes corre-
sponding to the LP hierarchy are also shown in Figure 5.
The state classes are used to encapsulate the state informa-
tion associated with each nodekomponent. The state in-
formation is used by WARPED (the underlying simulation
kernel) to enable rollbacks [3] and recover from causal vio-
lations that could occur in Time Warp based simulations [4].
The Packet (and derived) class is used for all communica-
tions between the nodes constituting a network model. The
packets in turn represent the discrete events in the simula-
tion. The API has been developed in C++ and the object
oriented features of the language,have been exploited to en-
sure it is simple and yet robust. The API plays a critical
role in insulating the model from the underlying simulation
kernel. The interface has been carefully designed to provide
sufficient flexibility to the application developer and enable
optimal system performance. Further details on the API are
available in the literature [7] .

3.5 PLAN library

As illustrated in Figure 5 , ANSE's API has been used
to develop a library for modeling and simulating active net-
works based on PLAN, a Packet Language for Active Net-
works [2]. PLAN is a simple, functional programming lan-
guage based on a subset of ML with some added primitives
to express remote evaluation (21. In a PLAN based active
network, the active packets can contain a PLAN program

Figure 5. Core classes of ANSE API

that can be used to customize the active network to provide
different networking services. The PLAN library provides
a PLANNode that is capable of parsing and interpreting
PLAN packets. A PLAN parser, constructed using PCCTS,
is used to parse incoming PLAN packets into an 00 inter-
mediate format (IF). The IF is fed to a PLAN interpreter
that executes the program contained in the packet. The in-
terpreter supports all PLAN constructs including recursive
function calls, exceptions, and forwarding of any PLAN
packets generated during interpretation. The PLAN library
also contains a PacketInj ector component that can be
used to inject PLAN packets into the simulated network.
The PacketInj ector can be used to inject a PLAN pro-
gram from a given file or obtain the PLAN program interac-
tively from the user. The PacketInj ector can be driven
using a variety of traffic generators based on random num-
ber generators available as a part of the ANSE library. The
random number generators generate traffic based on mathe-
matical distributions (such as normal or constant delay dis-
tributions, Poisson distribution, and Pareto distributions).
The library also contained components for modeling differ-
ent types of communication links with different parameters
(such as transmission delay and packet loss ratio).

The runtime structure of a typical PLAN based ac-
tive network is shown in Figure 6. As illustrated in the
figure, a single instance of the PLAN parser and inter-
preter are shared by the different PLANNodes. The de-
sign helps to minimize the overall resource requirements
(memory in particular) of the simulations; thereby enabling
simulation of larger networks using available hardware re-
sources. However, in parallel simulations, a single instance
of the PLAN parser and interpreter are used in each clus-
ter. This approach is a tradeoff between the overall mem-
ory requirements of the simulation versus simulation over-
heads (such as communication and concurrency). It must be
noted that concurrent demandslusage of the parser and in-
terpreter never arises because execution of events on a clus-
ter proceeds in a serial order. In other words, although the
WARPED clusters and the LPs operate asynchronously with
each other, the events on a given cluster are executed seri-
ally. Hence, in a given cluster, only one event can be active
at a time and the PLAN parser and interpreter are assigned
(or reserved) for use by that event. Since parsing of PLAN
packets their interpretation are two distinct and indepen-
dent stages, they can be cascaded or pipelined (Le., when
a previous packet is being interpreted the next packet can
be parsed) to improve performance. Such a design would
be of considerable benefit in shared memory multiprocessor
(SMP) platforms. Any dependencies or inconsistencies that
could arise due to asynchronous pipelining can be resolved
by directly utilizing the optimistic simulation infrastructure.
In other words, if inconsistencies arise then the simulation
would get rolledback and the events would get reprocessed

181

Shared I

tu structbres

Model

PLAN
Interpreter

Hierarchies Number of Processes
PLAN I Packet I Others I Total

Shared I
tu structires

i

Figure 6. Runtime structure

I Injectors I
Modell I 41 I 59
Model2
Model3

Table 1. Characteristics of the models

in the correct causal order. However, such a design was not
adopted in the current implementation because other simu-
lation techniques (such as sequential simulation and conser-
vative simulations) may not be capable of supporting such
a design.

As shown in Figure 6, the routing tables and DNS tables
(built and maintained by NetworkNodes) are also shared
between the various nodes constituting the simulation. This
design also helps to reduce the overall memory require-
ments’ of the simulations. As explained earlier, concurrent
access to these data structures does not arise. Hence, com-
plex locking mechanisms/semaphores are not necessary to
ensure their consistency/coherence. The routing and DNS
tables are replicated at each cluster (in a parallel simulation)
to minimize simulation overheads. The runtime modules of
ANSE (present in the ANSE library) assist in construct-
ing the tables by providing necessary information about the
network model being simulated. Although, the LPs are par-
titioned onto different clusters, the necessary information
(such as name of the nodes along with the interconnectiv-

ity data) related to all the nodes are extracted and filled
into the tables. In the current implementation of ANSE,
the LPs are equally divided amongst the clusters used in
a simulation i.e., each cluster has (almost) an equal num-
ber of LPs. ANSE’s API also includes interfaces for im-
plementing other partitioning algorithms. It must be noted
that, partitioning, assignment of nodes to clusters, and par-
allel simulation is completely transparent to the application
modules. The applications (and generated code) does not
change based on the number of clusters or the underlying
synchronization technique used in the simulations.

4 Experiments

The experiments conducted to evaluate the performance
of ANSE and the results obtained from the experiments
are presented in this section. Table 1 tabulates the char-
acteristics of the models used to conduct the experiments.
The network models were described in TSL and utilized the
various components available in the PLAN and ANSE li-
braries. The network models consisted of a set of intercon-
nected PLAN nodes. The larger models such as Model3,
Model4, Model 5 were constructed using the hierarchi-
cal modeling constructs supported by TSL. The number
of PLAN nodes in each model is shown in Table 1 . The
other components of the model such as traffic generators,
packet injectors, and links are grouped together and tabu-
lated in Table 1 (under the “Others” column). A route trac-
ing PLAN program [2] was run on the simulated network
model. The route tracing PLAN packets hop from one node
to another (as they get interpreted by each PLAN node in the

182

simulated network) and at each node they generate two new
PLAN packets. One packet carries the information about
the current hop back to the source node (i.e., the node at
which the route tracing for that particular packet began).
The other packet proceeds forward to trace the route un-
til the destination node is reached. The destination node on
each packet was randomly chosen from the set of nodes par-
ticipating in the simulation. The Packe t In j e c t o r (de-
scribed earlier) was used to inject the PLAN packets into
the simulated network. Each Packe t In j e c t o r was pro-
grammed to generate 500 requests (i.e., trace route to 500
randomly chosen PLAN nodes). The links interconnecting
the nodes were configured (through suitable parameters in
the TSL description) to have zero losses i.e., no packets get
lost (in other words, a basic TCP/IP type of connectivity
was assumed).

The graphs in Figure 7 present the time taken for per-
forming the different phases of model generation such as
parsing, elaboration, code-generation, and compiling the
generated code. The experiments were conducted on a
Linux workstation consisting of dual Pentium I1 (300 Mhz)
processors with 128 MB of main memory. The timings
were obtained using the standard Unix t i m e command.
The times plotted in the graphs are the average values com-
puted from 10 simulation runs. As illustrated by the graphs
shown in Figure 7 the time overall time for generating a net-
work model scales almost linearly with respect to the total
number of objects (or LPs) constituting a network model.
This data suggests illustrates the scalability of the modeling
and simulation infrastructure supported by ANSE. It also
indicates that ANSE will be capable of generating large
network models in reasonable time frames.

The parallel simulation experiments were conducted us-
ing a network of workstations. Each workstation consisting
of two Pentium I1 (300 MHz) processors in shared mem-
ory configuration. Each workstation had 128 MB of main

memory (RAM) and were running Linux. The workstations
were interconnected by fast Ethernet. The parallel simula-
tions were conducted using 1 to 16 WARPED clusters. The
results obtained from the various experiments are presented
by the graphs in Figure 8. The timing information for the
various simulations were obtained using the standard Unix
t i m e command. The simulation times plotted in the graphs
are the average values computed from 10 simulation runs.
The timings obtained from the simulations conducted using
the sequential kernel available with WARPED are also plot-
ted in the graphs. The sequential-simulator was configured
for its most optimal configuration (including using a splay
tree data structure for maintaining event lists).

As illustrated by the graphs in Figure 8, parallel simu-
lation provides considerable improvements in performance
for even medium sized network models. For example, par-
allel simulation using 16 processors provides an order of
magnitude improvement in performance when compared to
a sequential simulation. The primary factor for the pro-
nounced improvement in performance is the high event
granularity of the active packets which need to be parsed
and interpreted. As the number of processors used in the
simulation are increased, the computational load gets dis-
tributed across the parallel processors which in turn reduces
the overall simulation time. However, as illustrated by Fig-
ure 8(a), for small models, the performance deteriorates as
the number of processors are increased. This is because the
smaller models do not have sufficient concurrency and load
to utilize all the parallel processors. Hence, the overheads of
parallel simulations out weigh the gains accrued by increas-
ing the number of processors. The results also demonstrate
the scalability of the parallel simulation framework. The ex-
periments highlight that considerable improvements in per-
formance of the simulations can be achieved by employing
parallel simulation techniques. The experiments also illus-
trate the overall effectiveness of ANSE for modeling and
simulation of active networks.

u.. I
J

100 200 3.30 4W 5W 600 700 Bw 900 lo00
0.W1 c

Number GI Obpm

Figure 7. Time for model generation

5 Conclusions

The issues involved in the design and implementation of
an Active Networks Simulation Environment (ANSE) were
presented in this paper. The experiences gained during the
development of ANSE also highlight a number of issues
on different aspects of active network modeling and simula-
tion. Our experiences indicate that it is better to have to have
a simple, yet flexible, language such as TSL, for modeling
network topologies. It is useful to have a clear delineation
between the languages for developing the software mod-
ules for networking components and network modeling lan-
guages. For example, TSL and ANSE can also be used to
enable simulation of conventional networks. The flexibility
and general purpose design of ANSE can be utilized to en-

183

(a) Small Models (b) Large Models

Figure 8. Comparison between sequential and parallel simulation times

able inter-operability between different type of models and
even different simulators. An experimental evaluation of
ANSE was presented in the paper. The experiments demon-
strate that considerable improvements in performance of the
active network simulations can be achieved by employing
parallel simulation techniques. The experiments in con-
junction with the diverse set of issues addressed by ANSE
highlight the effectiveness of the active networks simulation
environment provided by ANSE.

References

[l] DAVID L. TENNENHOUSE, J . M. S. , SINCOSKIE,
W. D., WETHERALL, D. J., A N D MINDEN, G . J. A
survey of active network research. IEEE Communica-
tions Magazine 35, 1 (Jan. 1997), 80-86.

[2] HICKS, M., KAKKAR, P., MOORE, J. T., GUNTHER,
C. A . , A N D NETTLES, S. PLAN: A Packet Lan-
guage for Active Networks. In In Proceedings of the
Third ACM International Conference on Functional
Programming Languages (SIGPLAN'98) (May 1998),

[3] JEFFERSON, D. Virtual time. ACM Transactions
on Programming Languages and Systems 7, 3 (July
1985), 405-425.

[4] RADHAKRISHNAN, R., M A R T I N , D. E., CHETLUR,
M., RAO, D. M., AND WILSEY, P. A. An Object-
Oriented Time Warp Simulation Kernel. In Proceed-
ings of the International Symposium on Computing in
Object-Oriented Parallel Environments (ISCOPE'98),
D. Caromel, R. R. Oldehoeft, and M. Tholburn, Eds.,
vol. LNCS 1505. Springer-Verlag, Dec. 1998, pp. 13-
23.

[5] RAO, D. M., RADHAKRISHNAN, R., AND WILSEY,
P. A. FWNS: A Framework for Web-based Net-

pp. 86-93.

work Simulation. In 1999 International Conference
On Web-Bused Modelling & Simulation (WebSini'99)
(Jan. 1999), A. G . Bruzzone, A. Uhrmacher, and E. H.
Page, Eds., vol. 3 1 , Society for Computer Simulation,

[6] RAO, D. M., AND WILSEY, P. A. An object-oriented
framework for parallel simulation of ultra-large com-
munication networks. In Proceedings of the the Third
International Symposium on Computi ng in Object-
Oriented Parallel Environments (Nov. 1999).

[7] RAO, D. M., A N D WILSEY, P. A. Simulation of ultra-
large communication networks. In Proceedings of the
Seventh Inlernational Symposium on Modeling, Anal-
ysis and Simulation of Computer and Telecommunica-
tion Systems (Oct. 1999), pp. 112-1 19.

[8] RILEY, G. F., FUJIMOTO, R. M., A N D AMMAR,
M. H. A generic framework for parallelization of net-
work simulations. In Proceedings of the Seventh Inter-
national Symposium on Modeling, Analysis and Sim-
ulation of Computer and Telecommunication Systems

[9] ROBINSON, S . Simulation model verficiation and val-
idation: Increasing the users' confidence. In Proceed-
ings of the 1997 Winter Simulation Conference (Dec.
1997).

WILSEY, P. A., A N D ALEXANDER, P. Large
scale active networks simulation. In International
Workshop on Applied Parallel Computing (PARA98),
B. Kagstrom, J. Dongam, E. Elmroth, and J. Was-
niewski, Eds., vol. LNCS 1541. Springer-Verlag, June

[111 ZEGURA, E., CALVERT, K., A N D BHATTACHARJEE,
S . How to model an internetwork. In Proceedings of
IEEE INFOCOM (Apr. 1996), pp. 594-602.

pp. 9-14.

(Oct. 1999), pp. 128-135.

[Io] SWAMINATHAN, K., RADHAKRISHNAN, R.,

1998, pp. 537-542.

