
TEMPOROSPATIAL EPIDEMIC SIMULATIONS USING HETEROGENEOUS COMPUTING

Dhananjai M. Rao
CSE Department, Miami University

Oxford, OH 45056, USA.
email: raodm@miamiOH.edu

KEYWORDS
Temporospatial epidemic models, discrete event simulation,
GPGPU, OpenCL, Heterogeneous Computing (HC)

ABSTRACT

Discrete Event Simulation (DES) is widely used for analysis
of complex temporospatial epidemic models. In such sim-
ulations, a conspicuous fraction (50%–90%) of simulation
runtime is typically spent in solving equations used to model
epidemic progression. General Purpose Graphics Process-
ing Units (GPGPUs) hold considerable potential to reduce
time for solving epidemic equations. However, the signif-
icant differences in hardware and programming models of
GPGPUs and CPUs hinder their effective use, particularly
by epidemiologists and public health experts. Consequently,
we have developed an epidemic modeling and simulation en-
vironment called MUSE-HC. In MUSE-HC, discrete event pro-
cessing is performed on the CPU while epidemic equation
processing is performed on a GPGPU. MUSE-HC provides
a domain-specific modeling language called Epidemic De-
scription Language (EDL) to streamline modeling for non-
computing experts. The EDL model description is compiled
and transformed to heterogeneous computing source code
based on OpenCL. The generated code is compiled and ex-
ecuted on a workstation equipped with a GPGPU for simu-
lation and analyses. Our experiments conducted using syn-
thetic benchmarks show that our heterogeneous approach can
improve simulation performance by up to 16× for certain
temporospatial epidemic models.

INTRODUCTION

Recent multinational epidemics of communicable and
zoonotic diseases such as Zika fever, Chikungunya, in-
fluenza, etc. continue to pose serious health and socioeco-
nomic challenges. For example, the World Bank estimates
that the Zika epidemic in the Americas caused over $4 bil-
lion in losses just in 2015 with an estimated long-term cost of
over $40 billion to address microcephaly cases. Hence, there
is a heightened urgency to develop comprehensive methods
for proactively containing epidemics. Epidemic containment
strategies heavily rely on epidemiological modeling and sim-
ulation for disease forecasting and analysis. Unlike small
outbreaks, multinational epidemics have complex dynamics
that vary with geography and over time.

Figure 1: Example of a temporospatial epidemic model with
interacting agents represented as circles (Rao et al., 2017)

Consequently, temporospatial models are used to character-
ize epidemic progressions. Such models are typically rep-
resented as a set of interacting “agents”, where each agent
models epidemic progression in a collocated population. Dif-
ferent approaches are used to subdivide the population result-
ing in a Voronoi-like tessellation. Figure 1 shows an exam-
ple of a temporospatial epidemic model with circular agents
that model epidemic progression in their geographic region.
Interactions between agents are usually accomplished using
discrete event simulation due to its advantages. Epidemic
progression occurring between time steps is characterized us-
ing a system of equations. Geospatial attributes such as pop-
ulation, weather, etc. are incorporated as coefficients in the
equations. Each agent uses the same set of epidemic equa-
tions associated with a given disease but with different coef-
ficients corresponding to their geography.

Computational characteristics of epidemic simulations

Computational methods for simulating epidemic progression
use two key approaches – ¶ a system of Ordinary Dif-
ferential Equations (ODEs) along with numerical methods
are used for deterministic simulations; and · a system of
rate-based equations and a Stochastic Simulation Algorithm
(SSA) is used for probabilistic or stochastic simulations. One
of the aforementioned approaches is chosen based on analy-
sis needs. Immaterial of the method used, a conspicuous por-
tion of simulation-runtime is spent on solving equations. The
charts in Figure 2 illustrate such an example, where nearly
50% of the simulation runtime (in red color) is spent in solv-
ing equations. The data was collected using the temporospa-
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Figure 2: Proportion of simulation runtime in different op-
erations collated using Linux perf – n: Model processing,
n: Epidemic equations processing, n: Infrastructure

tial model from Rao et al. (2017) with 27,000 agents. The
epidemic equations for each agent were solved using a time
step of 0.05, i.e., 20 steps per day. The ODE version uses
Runge-Kutta 4th order method while the SSA version uses
Gillespie’s algorithm with Tau+Leap optimization.

Long run times of epidemic simulations

The computational time for solving epidemic equations
grows polynomially, often to � 90%, with changes to dif-
ferent settings, including: decrease in step size (often 0.01 or
0.005 is used), increase in model size or number of agents,
increase in complexity of equations, etc. The computational
overheads are further magnified by the need to run 1000s of
simulation replications for various analyses. Consequently,
reducing runtime of such epidemic simulations is important.

Heterogeneous computing: Opportunities & challenges

Heterogeneous Computing (HC) involves the use of more
than one type of processor for running a program. Typi-
cally, a combination of standard CPU and a General Purpose
Graphics Processing Unit (GPGPU) is used for HC. Modern
GPGPUs can deliver over a teraflop of compute power when
used effectively. A GPGPU is essentially a massive Single
Instruction Multiple Data (SIMD) processor in which a sin-
gle operation is simultaneously performed on thousands of
data items using independent compute units. Consequently,
GPGPU programming follows a different paradigm and re-
quires the use of different software systems such as CUDA
or OpenCL.
The GPGPU architecture is conducive for epidemic simu-
lation because all the agents in a temporospatial model use
the same set of equations (i.e., single set of instructions) but
with different coefficients (i.e., multiple data). Consequently,
unlike a CPU, a GPGPU can process thousands of equa-
tions simultaneously. On the other hand, modern CPUs are
highly optimized for logic and conditional operations which
play a dominant role in discrete event simulations. Con-
sequently, heterogeneous computing performed using CPU
and GPGPU holds considerable promise to reduce simula-
tion times. Reduction in simulation time is critical in en-
abling comprehensive epidemic analyses that often require
thousands of simulation replications.

Motivation & overview of proposed work

Realizing the computational advantages of heterogeneous
computing requires considerable technical skill and develop-
ment of software for different programming paradigms. The
issues are compounded by the need to develop both ODE and
SSA versions. Moreover, changes to equations require con-
sistent modifications to various versions. These issues hin-
der effective use of heterogeneous computing, particularly
by the end-users, including epidemiologists and public health
experts. Accordingly, to ease the effective use of heteroge-
neous computing (HC) for epidemic simulations, this paper
presents a novel modeling and simulation environment called
MUSE-HC. MUSE-HC provides an intuitive, domain-specific
modeling language called Epidemic Description Language
(EDL) to streamline modeling. A single EDL description is
compiled and transformed to generate both ODE and SSA
simulations capable of utilizing heterogeneous compute plat-
forms. Specifically, the simulations are designed to perform
discrete event processing on the CPU and epidemic equation
processing on a GPGPU. The architecture, design, and use
of EDL and MUSE-HC are discussed in detail. The verifica-
tion and validation experiments discussed in this paper show
that the results from MUSE-HC are consistent with their purely
CPU-based counterparts. The performance experiments con-
ducted using synthetic benchmarks show that heterogeneous
computing than improve simulation performance by 16× for
temporospatial epidemic simulations.

BACKGROUND

The proposed transdisciplinary research aims to provide a
comprehensive solution for temporospatial epidemic model-
ing and simulation using heterogeneous computing. Conse-
quently, the proposed software system integrates three differ-
ent disciplines, namely: ¶ temporospatial epidemic model-
ing, · discrete event simulation using a framework called
MUSE, and ¸ heterogeneous computing via OpenCL. The
pertinent concepts from these three distinct disciplines are
discussed in the following subsections.

Temporospatial epidemic modeling & simulation

Computational epidemiology builds on the core concepts of
modeling and simulation to enable comprehensive under-
standing of epidemics required for design and administration
of strategies to contain them. The de facto standard for con-
ceptual modeling of epidemics are compartmental models.
Figure 3 shows a classic SEIR model in which the popula-
tion is divided into independent subsets or compartments,
namely susceptible (S), exposed (E), infectious (I), and re-
covered (R).
The compartments and transitions in a model are chosen
based on the nature of the disease. Transitions between the
compartments are governed by ecological and epidemiologi-
cal parameters, such as α, β, and γ show in Figure 3. How-
ever, ecological characteristics can considerably vary based
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Figure 3: Example of a temporospatial epidemic model

on geography, population density, etc. Consequently, tem-
porospatial models further subdivide the population into in-
dependent but interacting entities or “agents” as shown in
Figure 3. Each agent models epidemic characteristics of a
given location (say x), by suitably modulating epidemic pa-
rameters (e.g., α to αx) based on ecology, demographics,
weather, and other environmental factors. In addition, agents
also interact with each other to model epidemic propagation
and other natural processes. The inter-agent interactions are
modeled through the exchange of discrete time events to en-
able the agents to operate independently. Figure 1 shows
such a temporospatial epidemic model consisting of many
interacting agents.
Progression of epidemics within an agent is simulated using
one of following two methods:

1. Deterministic methods: Deterministic methods use a sys-
tem of Ordinary Differential Equation (ODEs) to repre-
sent epidemic transitions. The system of ODEs is solved
using numerical methods such as Runge-Kutta 4th order
method.

2. Stochastic methods: Epidemics seldom progress in a de-
terministic manner. Stochastic methods aim to provide
a more realistic simulation by characterizing the natural
randomness inherent in epidemics. For stochastic simula-
tion, the epidemic transitions are represented as a rate-
based system of equations. Simulations are performed
using a Stochastic Simulation Algorithm (SSA) such as
Gillespie’s SSA along with Tau+Leap optimization.

These methods require small time steps, e.g., 0.01 or smaller,
to yield sufficiently accurate results, particularly at inflection
points. The time step has a conspicuous impact on compu-
tational time, with smaller time steps requiring longer com-
putational times. Furthermore, simulation-based analyses re-
quire 1000s of simulations to be conducted which dramati-
cally increase analysis time.

Miami University Simulation Environment (MUSE)

The proposed heterogeneous computing (HC) capable simu-
lation system has been developed by significantly enhancing
a general purpose, discrete event simulator called MUSE. It
has been developed in C++ and exposes an object-oriented
Application Program Interface (API) for modeling. A con-
ceptual overview of a MUSE simulation is shown in Fig-
ure 4. A MUSE simulation is organized as a set of Logi-
cal Processes (LPs) or “agents” that interact with each other
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Figure 4: Overview of a MUSEsequential simulation

by exchanging virtual timestamped events. We have ex-
tended this capability to enable an LP to operate in HC
mode. The simulation kernel shown in Figure 4 im-
plements core functionality associated with LP registration,
event processing, state saving, synchronization, and Global
Virtual Time (GVT) based garbage collection. In this study,
we have extended MUSE’s kernel to operate in HC mode
using OpenCL. In HC mode, simulations on the CPU pro-
ceeds sequentially and concurrently (all LPs are at the same
simulation-time) on the GPGPU. MUSE can be downloaded
from http://pc2lab.cec.miamiOH.edu/muse.

OpenCL concepts & terminology

OpenCL is an open, royalty-free standard for parallel pro-
gramming of computational devices, including: GPGPUs,
CPUs, DSPs, and FPGAs. Unlike its competitor CUDA
(which is currently supported only by NVIDIA) OpenCL is
supported by many leading vendors including: Intel, AMD,
IBM, Apple, Samsung, NVIDIA, ARM, and Qualcomm, to
name a few. An OpenCL program consists of many work

items called a “workgroup” running in parallel on one
or more processing elements as shown in Figure 5.
work items are executed using the Single Instruction Mul-
tiple Data (SIMD) paradigm. In this research, each work

item is used to run epidemic equations for an LP or agent. A
set of work items have access to memory organized hierar-
chically, which local memory being much faster than global
memory. Consequently, MUSE-HC is designed to primarily
work with local memory and transparently manages copying
data to global memory and to CPU’s main memory as neeed.
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Figure 5: Overview of OpenCL runtime
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RELATED WORKS

The primary focus of this study is modeling and accelerat-
ing the simulation of temporospatial epidemic models us-
ing Heterogeneous Computing (HC). Several prior investi-
gations have focused on parallel epidemic simulations, in-
cluding works by Giridharan and Rao (2016), Rao (2016),
and Yeom et al. (2014). These investigations focus on par-
allel epidemiological simulations using just CPUs. On the
other hand, this investigation focuses on using both CPUs
and GPGPUs. Consequently, this section compares and con-
trasts the proposed work with closely related research that
involve heterogeneous computing.
Leonenko et al. (2015) propose the use of heterogeneous

computing for epidemic simulations. Their work is similar to
ours in that discrete event processing is performed on CPU
while epidemic propagation is performed on GPGPUs. Their
work focus on predefined models written using MATLAB.
The use of multiple GPGPUs for epidemic simulation us-
ing NVIDIA CUDA is proposed by Shekh et al. (2015). They
focus on simulating predefined SEIR individual-based mod-
els with contacts arising at buildings or homes. Epidemic
simulations using multiple GPGPUs and CUDA in a cluster
computing environment has also been investigated by Zou
et al. (2013). Their work focuses on simulating predefined
contact networks while compensating for communication la-
tencies between the compute nodes on the cluster. Arlindo
et al. (2015) explore the use of GPGPUs and CUDA for epi-
demic simulations. They represent each individual as a string
and simulate a predefined epidemic with a fixed set of com-
partments.

Similar to some of the aforementioned investigations, this
work also focuses on simulation of epidemics using hetero-
geneous computing. However, several novel aspects distin-
guish this research from prior investigations, namely: ¶ un-
like prior investigations that use a fixed model, this study
applies to any epidemic model; · a novel, domain-specific
modeling language called EDL is proposed in this study,
while prior investigations use predefined models; ¸ a key
distinction in our study is the use of temporospatial models
rather than contact networks used by other investigators; ¹ in
contrast to earlier studies that use a hard-coded source code,
in this study the CPU and GPGPU source codes are auto-
matically generated from EDL; º in this study we have used
OpenCL that is broadly usable and not CUDA that is limited
to running only on NVIDIA hardware.

MUSE-HC: ARCHITECTURE & DESIGN

Harnessing the heterogeneous computing (HC) capabilities
of GPGPUs and CPUs for temporospatial modeling and
simulation of epidemics requires considerable knowledge
and technical skill. The programming paradigms of CPUs
and GPGPUs are substantially different requiring completely
different software. Moreover, changes to epidemic tran-
sitions require tedious modifications to both deterministic
and stochastic versions complicating software development,
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Figure 6: Process of modeling & simulation with MUSE-HC

troubleshooting, and maintenance. These issues hinder ef-
fective use of heterogeneous computing.
Accordingly, to ease the effective use of heterogeneous com-
puting (HC) for epidemic simulations, we have developed
a novel modeling and simulation environment called MUSE-
HC. Figure 6 illustrates the process of modeling and simu-
lation using MUSE-HC. The primary input is a description of
the compartmental model described using a domain-specific,
Epidemic Description Language (EDL). EDL has been de-
signed to provide an intuitive, yet expressive constructs for
describing compartmental models as discussed in the follow-
ing subsection. The EDL description is parsed into an inter-
mediate Abstract Syntax Tree (AST) using a custom parser.
The EDL parser has been developed in C++ using BOOST’s
Spirit library. The AST is used by an a code genera-
tion module that converts the AST into semantically equiva-
lent versions of source codes for conducting both determin-
istic and stochastic simulations on CPU and GPGPU. Note
that a single EDL description is compiled and transformed
to generate both ODE and SSA simulations capable of uti-
lizing heterogeneous compute platforms. A single, intuitive
source minimizes overheads associated with model develop-
ment, validation, and maintenance.
The generated model is then complied and linked with the
MUSE-HC simulation kernel to produce the final executable.
The simulation kernel provides generic functionality for dis-
crete event simulation and GPGPU-based operations. The
MUSE-HC simulations are designed to perform discrete event
processing on the CPU and epidemic equation processing on
a GPGPU. The kernel also generates results in the form of
Comma Separated Values (CSV) files to ease visualization
and further analyses. MUSE-HC is also discussed in detail in
this section.

Epidemic Description Language (EDL)

The Epidemic Description Language (EDL) has been de-
signed to ease effective use of heterogeneous computing
(HC) by subject-matter experts including epidemiologists
and public health practitioners. EDL provides intuitive,
domain-specific language constructs that ease description of
compartmental models in a machine processible format. For
example, consider the Ebola compartmental model shown
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Figure 7: Compartmental model for Ebola proposed by
Legrand et al. (2007) and used by Rivers et al. (2014)

in Figure 7 that was originally proposed by Legrand et al.
(2007). The conceptual model has 6 compartments: Suscep-
tible (S), Exposed (E), Infectious (I), Hospitalized (F ), and
Funeral (F ). Transition of individuals between the compart-
ments is governed by the equations shown with each tran-
sition. The equations involve several epidemiological con-
stants that vary for different countries as discussed in detail
by Legrand et al. (2007) and Rivers et al. (2014).
The EDL description for the compartmental model in Fig-
ure 7 is shown in Listing 1. The description begins with
the name of the epidemic (e.g., Ebola Liberia) followed
by four code blocks, namely constants, parameters,
compartments, and transitions. The constants
block contains named constants used to describe compart-
ment transitions. These constants directly reflect those used
in the conceptual compartmental model. The parameters
block contains constants that are computed (i.e., determined
at runtime) or whose values vary with time. These include
values that vary with geography, temperature, or other model
characteristics. Parameters may also be used for values that
are set during simulation and are used in transition equations.

# EDL description for the Ebola model
epidemic Ebola_Liberia {
# Epidemic constants in this model
constants {
Bi = 0.16; # Contact rate, community
A = 0.083; # Incubation rate (12 days)
Yi = 0.0667; # Infection duration (15 days)
# More constants not shown for brevity

}
parameters {

# No time-varying parameters in this model.
}
compartments {

# Comments removed for brevity
s, e, i, h, f, r;

}
transitions {

e += -1, i += 1 @ (A * e);
i += -1, h += 1 @ (Yh * l * i);
h += -1, f += 1 @ (Ydh * O2 * h);
f += -1, r += 1 @ (Yf * f);
# More transitions removed for brevity

}
}

Listing 1: Partial EDL description for model in Figure 7

The compartments code block lists all of the compartments
from the conceptual model. The last code block in an EDL
description defines transitions between the compartments.
Each transition consists of two parts, namely: ¬ a comma-

separated list of population changes to a subset of compart-
ments followed by ­ the transition rate equation. These two
parts are separated by an @ symbol read as “at the rate of”.
For example the E A·E−−→I transition from Figure 7 is directly
encoded as: e -= 1, i += 1 @ (A * e) as shown in List-
ing 1. Since EDL syntax has been designed to provide a di-
rect mapping from a conceptual model, EDL is more intuitive
for use by epidemiologists and public health experts.

EDL parser and code generator

An EDL description of an epidemic is parsed into an in-
memory Abstract Syntax Tree (AST) using the EDL parser
as illustrated by Figure 6. The parser has been developed
in C++ using BOOST Spirit library (version 2.53). The
Spirit library uses expression templates to implement an
EBNF like sub-language within C++. The resulting EDL
parser produced via Spirit is an LL(1) parser that does not
require any backtracking due to the straightforward grammar
for EDL. The parser performs both syntactic and semantic
checks on the input EDL. The output from the EDL parser is
an Abstract Syntax Tree (AST). AST is an in-memory data
structure that stores the input EDL in a form conducive for
further processing.

The AST produced by the EDL parser is used to generate
source code for a complete model compliant with MUSE-HC’s
API. The primary generated artifact is an agent class that
includes both deterministic and stochastic versions of the
model. The deterministic version uses Ordinary Differen-
tial Equations (ODEs) to characterize state transitions. The
ODEs are automatically generated by appropriately com-
bining various transitions for each compartment. Listing 2
shows a snippet of the generated source code with ODEs for
the Ebola EDL from Listing 1. The code in Listing 2 shows
implementation for the ode method (used by MUSE-HC) that
would typically be manually coded by a modeler. The source
code is in C so that the same code can be run both on the CPU
as well as on a GPGPU via OpenCL. The code uses a custom
real user-defined type that is mapped to either the float

or the double primitive type, depending on the application’s
needs. Similarly, source code is also generated for running
stochastic versions of the model.

The EDL code generator also produces a top-level simula-
tion C++ class compliant with MUSE-HC’s Application Pro-
gram Interface (API). This class provides command-line ar-
guments to set initial values for different compartments in
the model. In addition, it provides options for generating
a grid of agents in a temporospatial model as shown earlier
in Figure 1. The modeler may further enhance or modify
the generated source code for fine tuning the simulation as
needed. The generated source code is compiled and linked
with MUSE-HC to produce the final simulation executable.
The resulting executable utilizes the MUSE-HC library to en-
able simulating the model on heterogeneous computing ca-
pable hardware platforms.



typedef double real;
void ode(const int numVars, const real params[],

const real comp[], real deltas[]) {
const real N = (comp[s] + comp[e] + comp[i] +

comp[h] + comp[f] + comp[r]);
deltas[s] = (-1 * ((Bi * comp[s] * comp[i]) +

(Bh * comp[s] * comp[h]) +
(Bf * comp[s] * comp[f])) / N);

deltas[e] = (1 * ((Bi * comp[s] * comp[i]) +
(Bh * comp[s] * comp[h]) + (Bf * comp[s] *
comp[f])) / N) + (-1 * (A * comp[e]));

deltas[h] = (1 * (Yh * l * comp[i])) + (-1 *
(Ydh * O2 * comp[h])) + (-1 * (Yih *
(1 - O2 ) * comp[h]));

// Additional equation not shown for brevity
}

Listing 2: Snippet of Ordinary Differential Equations
(ODEs) in the C++ source code generated for EDL from List-
ing 1

The MUSE-HC simulation framework

The heterogeneous computing (HC) capable simulations
have been enabled by significantly enhancing a discrete event
simulation framework called MUSE. The resulting simula-
tion framework is called MUSE-HC. It has been developed
in C++ using its object-oriented capabilities. The API of
MUSE-HC includes a HCAgent class that must be imple-
mented to perform various model related operations on both
the CPU and GPGPU. The EDL code generator discussed
earlier essentially generates an implementation for this class.
The HCAgent provides a set of macros to facilitate a sin-
gle version of the source to be used both on the CPU and
GPGPU. Specifically, these macros convert the source code
into strings. The strings are appropriately concatenated to-
gether to produce the OpenCL source code for execution
on a GPGPU. The HCAgent class also provides a library
of algorithms for deterministic and stochastic simulations,
including: Runge-Kutta 4th order method, Gillespie’s ex-
act Stochastic Simulation Algorithm (SSA), Gillespie’s SSA
with Tau+Leap optimization, and Mersenne-Twister random
number generators.

In conjunction with the HCAgent, MUSE-HC also requires
implementation for an HCState classes that encapsulates
the state of an agent. The state includes values for the
different compartments in the model along with any time-
dependent parameters. The EDL code generator also gen-
erates an implementation for the HCState class using the
macros provided by MUSE-HC. The state is copied to-and-
from the GPGPU for heterogeneous computing.

Core simulation and overlapped execution
The salient operations performed by MUSE-HC to run an het-
erogeneous computing (HC) capable simulation is summa-
rized in Algorithm 1. Upon starting, as part of initialization,
MUSE-HC first prepares the OpenCL kernel for GPGPU-based
execution. The OpenCL kernel is created by combining stan-
dard MUSE-HC support library along with an agent’s custom
ODEs and SSA source codes. Next, the simulation proceeds

in cycles in which each agent processes its next set of events
in chronological order. After processing events, each agent
indicates if additional HC operation is desired.

Agents requesting HC operations are tracked in an ocl list
and scheduled for execution in batches as shown in Algo-
rithm 1. The size of each batch is determined by a given
workgroupSize value. The size of the workgroup plays
an important role in effectively utilizing the computational
resources of a GPGPU. On the GPGPU, the MUSE-HC li-
braries work in concert with the generated code to perform
deterministic or stochastic simulation operations. The data
for parameters and compartments for each agent are copied
to the GPGPU to ensure fast operation. Note that data trans-
fer is an overhead associated with all GPGPU-based comput-
ing solutions.

Overlapped execution on CPU & GPGPU

In MUSE-HC, executions on the GPGPU are overlapped with
discrete event processing on the CPU as summarized in Al-
gorithm 1. Specifically, the OpenCL kernels are scheduled
to execute on the GPGPU in batches and the CPU contin-
ues with discrete event processing. Overlapped execution
enables amortization of the overheads associated with het-
erogeneous computing. Using an appropriate workgroup size
plays an important role in realizing fast and efficient simula-
tions. Currently, an effective workgroup size is experimen-
tally determined based on the computational capabilities of
the CPU versus the GPGPU.

begin initialization
// Generate OpenCL kernel for Heterogeneous Computing

end initialization
begin simulation

Time LVT = 0, GVT = 0, lastLVT = 0
std::list<HCAgent*> ocl; // HC agents per time step
while GVT < endTime do

LVT = scheduler→getNextEventTime();
if (LVT > lastLVT) or (ocl.size() > workgroupSize) then

if kernelRunning then // overlapped operations
wait() // Wait for previous GPU kernel
copyStateFromGPU();

end if
copyStateToGPU(ocl);
scheduleOpenCLKernel(); // asynchronous launch
kernelRunning = true; lastLVT = LVT;

end if
// Do discrete event processing and track HC agents
if processNextEvent() then ocl.push back(agent);
GVT = updateGVT(); // Update GVT as needed

end while
end simulation

Algorithm 1: Algorithmic overview of salient simulation op-
erations in MUSE-HC



EXPERIMENTS

The proposed MUSE-HC modeling and simulation framework
capable of heterogeneous computing (HC) has been used to
conduct a broad range of experiments to assess its effective-
ness. The initial set of experiments focused on verification
and validation. The performance assessment of MUSE-HC has
been conducted using a synthetic benchmark that embodies
the key characteristics of temporospatial epidemic models.
The design of experiments, observations, and inferences are
discussed in the following subsections.

Hardware platform used for experiments
The experiments has been conducted on a workstation
equipped with Intel Xeon E5-2680 v4 CPU (at 2.4GHz with
turbo boost to 3.2 GHz) and a NVIDIA Pascal P100 GPGPU.
The GPGPU consists of 3,584 SIMD cores that can deliver a
theoretical 4.7 TeraFLOPS of double-precision performance.
It has 16 GB of HBM2 memory on the device.

Verification and Validation (V&V)

The verification and validation (V&V) of MUSE-HC has been
conducted using the Ebola model in Figure 7. This model
has been extensively validated by Legrand et al. (2007) and
more recently by Rivers et al. (2014). Specifically, we have
used the Ebola model with epidemic constants for Liberia
obtained from Rivers et al. (2014). The inset chart in Fig-
ure 8 shows the reference model output from Rivers et al.
(2014). The larger chart in the figure shows the correspond-
ing ODE (deterministic) and SSA (stochastic) version of the
outputs from MUSE-HC. As illustrated by the charts in Fig-
ure 8, the outputs form MUSE-HC were consistent with the ex-
pected data. Furthermore, outputs from HC simulations were
statistically compared to the results from a purely CPU-based
simulation to ensure they produced identical results. Note
that statistical comparison of outputs is necessary only for
the stochastic version of the simulation due to the inherent
randomness in the model’s output.
The V&V experiments also included metamorphic testing
with different initial epidemic settings. The outputs from HC
simulations were statistically compared to the results from
a purely CPU-based simulation to ensure both versions pro-
duced identical results. Collectively, these experiments ver-
ify and validate not only the models produced by EDL parser
but also the simulation infrastructure of MUSE-HC.

Synthetic benchmark for performance assessment

In this study, performance assessments of MUSE-HC have
been conducted using a synthetic benchmark. The bench-
mark has been designed to dynamically generate a grid of
agents of specified size. The grid of agent mirrors the typical
structure of an temporospatial model, similar to the model
shown in Figure 1. Each agent performs deterministic or
stochastic simulation using heterogeneous computing (HC)
capabilities of MUSE-HC. In addition, each agent exchanges
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Figure 8: Results from V&V experiments conducted using
Ebola model from Rivers et al. (2014) as reference.

a given number of events to simulate movement of people
to different geographic regions. The synthetic benchmark
provides a comprehensive set of command-line arguments to
configure its operational characteristics and eases assessment
of different settings. This feature has been used for conduct-
ing the performance experiments discussed in the following
subsections.

Influence of OpenCL workgroup size

Workgroup size plays an important role in effective use of
heterogeneous computing for two key reasons. First, it
influences the hardware utilization on the GPGPU. Small
workgroup sizes do not fully utilize the GPGPU hardware
while large workgroup sizes increase overheads of transfer-
ring data. Second, workgroup sizes influence the degree of
overlapped execution between CPU and GPU.

The chart in Figure 9 illustrates the impact of varying the
workgroup size on simulation runtime. The chart plots data
for both deterministic (using Runge-Kutta) and stochastic
(Gillespie with Tau+Leap) simulations. The data plotted is
the average from 10 independent runs for each workgroup
size. The data has been collected using the synthetic bench-
mark with 10,000 agents in a 100×100 grid. The data shows
that the workgroup size has a more pronounced influence on
ODE execution when compared to SSA execution. This is
because the ODE version has a much higher computational
workload when compared to the corresponding SSA version.
However, the improvements tapper off around a workgroup
size of 3,000 because the GPGPU has 3,584 SIMD cores
and any workgroup larger than that number cannot operate
in parallel. However, the larger workgroups are able to bet-
ter amortize overheads of data transfers between CPU and
GPGPU, thereby slightly improving performance. Conse-
quently, for rest of the performance experiments we have
used a workgroup size that is equal to the number of agents
in the model.



 0

 75

 150

 225

 300

 375

 100  250  500  1000  3584  10000

R
u

n
ti

m
e
 (

s
e
c
)

OpenCL workgroup size

G
P

U
 h

a
s

3
5

8
4

 C
U

D
A

 c
o

re
s

10,000 agents, step: 0.01

ODE (Runge-Kutta)
SSA (Gillepsie Tau+Leap)

Figure 9: Impact of varying workgroup size

Effect of model size (i.e., number of agents)

The computational requirements of a simulation is directly
proportional to the model’s size, i.e., number of agents in a
model. The charts in Figure 10 illustrates the influence of
model size on the runtime. The charts also compare the run-
time of the heterogeneous computing (CPU+GPGPU) versus
simulation run using 1 core on the CPU. As illustrated by the
charts, for small models with just 100 agents, the HC version
does not yield significant performance improvement. This
is because the compute capabilities of the GPGPU are not
fully utilized. With increase in model size, more agents are
scheduled to run on the GPGPU thereby better utilizing its
compute resources and the HC version outperforms its corre-
sponding CPU-only version. The maximum speedup for de-
terministic (i.e., ODE-based) version is 5× while the stochas-
tic (i.e., SSA version) is 8.5×. The SSA version yields bet-
ter performance improvement due to its increased computa-
tional needs arising from random number generation. In both
cases, however, the performance peaks around 4000 agents –
the peak is attributed to the maximum of 3,584 SIMD cores
available on the GPGPU used in this study.
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Figure 10: Impact of varying number of agents (step: 0.01)

Effect of step size

The computational demands of both deterministic and
stochastic simulation are inversely proportional to the step
size – i.e., as step size decreases the computational demands
increases. Increase in computational needs in turn increases
runtime of simulations. The charts in Figure 11 illustrate the
change in runtime as the step size is decreased. As illustrated
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Figure 11: Impact of varying step size (10,000 agents)

by the CPU-only curves, for both ODE and SSA versions,
the runtime increases polynomially as expected. Neverthe-
less, the increased computational demands at each simulation
time enables more effective use of GPGPU resources and the
speed-up realized by the heterogeneous computing (HC) ver-
sion proportionally increased. With a time step of 0.005, the
HC version provides 10× and 16× performance improvement
for the ODE and SSA versions respectively, highlighting the
overall effectiveness of MUSE-HC.

CONCLUSIONS & FUTURE WORK

Humanity will continue to face multifaceted health and so-
cioeconomic challenges due to communicable and zoonotic
diseases. Hence, there is a heightened urgency to de-
velop comprehensive methods for proactively containing epi-
demics. Contemporary approaches to epidemic forecasting
and containment rely on temporospatial modeling and simu-
lation. Temporospatial epidemic models are used to charac-
terize the diversity in ecology, geography, weather, popula-
tion density, etc. Unfortunately, the accuracy and fidelity of
such models is realized at the cost of substantial increase in
computational time, which hinders comprehensive analyses
in short time frames.
Heterogeneous Computing (HC) holds considerable promise
to accelerate simulation of temporospatial models. However,
HC currently requires considerable technical skill and devel-
opment of software for different programming paradigms for
both deterministic and stochastic simulations. These issues
hinder effective use of HC, particularly by the end-users, in-
cluding epidemiologists and public health experts.
Accordingly, to ease the effective use of heterogeneous com-
puting (HC) for epidemic simulations, this paper presents
a novel modeling and simulation environment called MUSE-
HC. MUSE-HC provides a domain-specific modeling language
called Epidemic Description Language (EDL) to streamline
modeling. The syntax and semantics of EDL have been de-
signed to provide direct mapping to conceptual compartmen-
tal models. The paper illustrated the intuitive and expressive
constructs supported by EDL using an Ebola model.
A single EDL description is compiled and transformed to
generate both ODE and SSA simulations capable of utiliz-
ing heterogeneous compute platforms. Automatic code gen-
eration eliminates overheads of manual programming. The



generated model utilizes MUSE-HC to perform discrete event
processing on a CPU and epidemic equation processing on
a GPGPU. The MUSE-HC kernel ensures efficient use of both
the CPU and GPGPU by overlapping execution of different
agents.
The modeling and simulation infrastructure of MUSE-HC has
been verified and validated using a well-established Ebola
model. The performance assessment of MUSE-HC has been
conducted using a synthetic model that eases exploration of
different model settings. A key hardware configuration that
influences the utilization of GPGPU is the workgroup size.
The experiments showed that large workgroups sizes are bet-
ter because it enables faster amortization of the overheads in-
volved in copying data between the CPU’s memory and the
GPGPU’s memory. The number of agents in the model also
had strong influence on the performance gains realized using
heterogeneous computing (HC). However, the step size used
by numerical methods had the most conspicuous impact on
performance improvements realized using HC. With a time
step of 0.005, the HC version provides 10× and 16× perfor-
mance improvement for the ODE and SSA versions respec-
tively, highlighting the overall effectiveness of MUSE-HC.
The experiments show that additional opportunities exist to
improve performance of heterogeneous computing by fur-
ther overlapping CPU and GPGPU computation. We plan on
exploring this aspect in future works. Importantly, we also
plan to pursue parallel simulations using a cluster of work-
stations capable of heterogeneous computing. Parallel, het-
erogeneous computing approaches also holds considerable
promise to further accelerate simulation of large temporospa-
tial epidemic models.
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