
Experiences with auto-grading in a systems course

Dhananjai M. Rao

Computer Science and Software Engineerring (CSE) Department

Miami University

Oxford, OHIO 45056. USA

raodm@miamiOH.edu

Abstract—Rapidly growing computing-class sizes across college
campuses are challenging instructional resources and staffing. We
have developed an automatic testing and grading software system
called Code Assessment Extension (CODE). It is integrated with
our existing Canvas Learning Management System (LMS). This
paper presents experiences from both student and instructor
perspectives with using auto-grading in a junior-level, systems
course with a heavy emphasis on programming in C++, with
several challenges, including – ① this course was the first
experience for both the students and the instructor in using
any form of automatic grading, ② the students have limited
experience with C++ programming, particularly in Linux, and
③ the course includes complex concepts on operating systems,
multithreading, and networking. The paper presents quantitative
results from 3,300 submissions (from 1 course, 1 semester, 6
programming assignments, 54 students, multiple submissions per-
student per-assignment) and analysis of end-of-course surveys
from 54 students. The inferences from the statistics strongly
support the use of automatic grading systems such as CODE
to enhance learning in programming-centric courses.

Index Terms—Auto-grader, Programming, Automatic Testing,
C++, Operating Systems, Networking, CODE

I. INTRODUCTION AND MOTIVATION

Computer and information sciences (CIS) is a rapidly

growing disciple, particularly at the baccalaureate level in

the United States [7]. The longer-term trends in the number

of students matriculating with undergraduate degrees in CIS

is illustrated by Figure 1. The data in this chart has been

obtained from the National Center for Education Statistics

(NCES) [8]. As illustrated by the chart, currently, we are in

the midst of a surge in enrollments causing heavy demand for

computing courses across the nation [7]. Rapidly growing class

sizes for computing across college campuses is challenging

instructional resources and staffing [7]. The situation is further

complicated by the challenges in hiring and retaining high-

quality instructors [7]. These challenges have catalyzed the

use of automatic testing tools to effectively teach programming

as discussed in several recent publications [2], [6], [10], [9].

Several of these recent, closely related efforts are discussed in

Section III.

A. Motivation for automated testing and grading

Consistent with national trends, we have also experienced

significant growth in the number of majors in the Computer

Science and Software Engineering (CSE) department. In just

the last 3 years, our total number of students has almost

doubled from 426 (Fall 2015) to 769 (Fall 2018). Moreover,

Fig. 1. Nationwide trends in undergraduate CIS enrollments [8]

a large number of non-majors also take courses offered by

the CSE department. The rapid growth poses challenges in ef-

fectively teaching the substantially larger number of students.

Accordingly, to ensure sustainable, high-quality outcomes for

our students and instructors, we have developed an automatic

testing and grading software system called Code Assessment

Extension (CODE). It is integrated with our existing Canvas

Learning Management System (LMS).

CODE has been designed to facilitate teaching and learning

in programming-centric courses. It integrates with Canvas

LMS, thereby preserving an environment that is familiar to

both students and instructors. It automates the key processes

of testing student submissions, including: compiling, style-

checking, running functional tests, and annotating the source

code to provide feedback. From a student perspective, CODE

streamlines student experiences and provides timely (in about

20 seconds) feedback regarding various aspects of a solution.

The student can use the feedback to refine their solution,

thereby improving learning outcomes. From a faculty perspec-

tive, CODE eliminates many of the tedious tasks enabling

instructors to focus on higher-level course outcomes, such

as: conciseness of solution, design, quality, etc. Section II

provides further details on the architecture and design of the

CODE plug-in.

B. Pertinent education theories

The pedagogical underpinnings for the CODE plug-in stem

from the interplay of two key educational theories, namely:

behaviorism and constructivism. As the name suggests, “be-

haviorism” is a learning theory that focuses on eliciting

desirable behaviors, typically through repetitive condition-

ing [1]. Specifically, Computer-based Training (CBT) builds

on behaviorist theory to facilitate learning particularly at

knowledge, comprehension, and application cognitive levels of

Bloom’s taxonomy. Our CODE plug-in falls into the category

of behaviorist tools because it is designed to elicit several

positive behaviors, including: ① regular testing via automated

tests, ② maintaining good coding style via its style checkers,

③ improve structure and cohesion by limiting methods to

25 lines. The CODE plug-in also embodies the essence of

constructivism in which students actively learn by solving

a problem iteratively. The CODE plug-in runs functional

tests and provides feedback to the students quickly (in ~20

seconds). The feedback enables the students to observe issues,

form mental models, and enhance their solutions to trou-

bleshoot reported errors. Combined with the aforementioned

behavioral outcomes, the plug-in also facilitates learning at

the application, analysis, and synthesis levels in Bloom’s

taxonomy.

C. Key contributions of this paper: Innovative Practice

Typically, auto-grading tools are used in introductory pro-

gramming courses. However, this paper presents experiences

with using auto-grading in a junior-level Systems-2 course

(with computer science, software engineering, and computer

engineering students) with a heavy emphasis on programming

in C++, with several challenges, including – ❶ this course was

the first experience for both the students and the instructor in

using any form of automatic grading, ❷ the students have

limited experience with C++ programming, particularly in

Linux, and ❸ the course includes topics on operating sys-

tems, multithreading, and networking, which involve complex

concepts.

Another conspicuous contribution of this paper is that it

provides a comprehensive quantitative and qualitative analysis

of experiences using automatic testing. Section V presents a

detailed quantitative and qualitative analysis of data collected

during the course. Statistical analysis of 3,300 submissions

from 54 students (6 assignments, multiple submission per-

student per-assignment) adds support for utilizing automatic-

grading tools such as CODE to enhance teaching and learning

in programming-centric courses. The experiences will benefit

other educators (and the community) who are debating the use

of auto-graders.

II. THE CODE ASSESSMENT EXTENSION (CODE)

The Code Assessment Extension (CODE) has been de-

veloped to facilitate teaching and learning in programming-

centric courses. CODE automates the process of compiling,

style checking, testing, and annotating feedback for source

code submitted by students. An overview of the software

systems constituting CODE is illustrated in Figure 2. The core

software system has been developed in PHP programming lan-

guage using the popular Laravel framework. All interactions

with the system are performed via web-pages served by an

Apache web-server over HTTPS.

Fig. 2. Architectural overview of CODE

CODE has been designed to operate with our existing Canvas

Learning Management System (LMS). Integration with Canvas

has been accomplished using the Learning Tools Interoper-

ability (LTI) capabilities of Canvas. In more generic terms,

CODE can be viewed as a plug-in to Canvas. The primary

motivation for this design approach is to reuse all the familiar

features of Canvas for both students and instructors, includ-

ing: assignment creation, assignment management, solution

submission, grading via speedgrader, providing feedback, and

managing grades via gradebook. Moreover, this design enables

us to delegate initial authentication tasks to Canvas and CODE

interacts with Canvas using OAuth tokens. Consequently,

sensitive login credentials are not stored or managed by CODE,

which alleviates a large number of security concerns.

The CODE plug-in is setup for all users by our IT department

via suitable LTI configuration. Once setup, both instructors

and students log onto CODE via Canvas. Instructors initiate

interactions with CODE by creating an assignment in Canvas

and using the Website URL as the submission type. This

selection causes Canvas to permit the instructor and students to

interact with CODE. The plug-in permits instructors to further

configure assignment settings by selecting programming lan-

guage, uploading necessary files, and configuring functional

tests. Each test case includes optional inputs, command-line

arguments, environment settings, and expected outputs. The

expected outputs are used for validating student submissions.

The assignment and test configurations are stored in a SQL

database.

Students submit solutions to the assignment via CODE. The

student submissions are stored on File storage and metadata

about submission is stored in the SQL database. Next, the

plug-in schedules a grading task to be run asynchronously

via the backend Docker service as shown in Figure 2. The

Docker service starts a Docker container that runs a dedicated

grader process. The grader process downloads the student

submissions, compiles it, runs tests, and stores the results

back into the SQL database. Interactions between the grader

process and the database are facilitated via a custom RESTful

Application Program Interface (API). Once the grading pro-

cess completes, the results are displayed back to the student.

The student may then decide to finish the submission or start

a new submission.

III. RELATED RESEARCH

The challenges posed by the nationwide increase in enroll-

ments for computing courses (see Figure 1) has catalyzed

many institutions to seek innovative solutions to meet the

demands. One of the well-established approaches is the use of

automatic testing and grading software tools [12], [5]. Such

“auto-grader” software, including our CODE plug-in, facilitate

teaching and learning in programming-centric courses. Several

such software systems have been reported in the literature [4],

[5], [9], [10], [12]. This section presents a brief summary

of some of the recent and closely related software tools. In

addition, these publications also include references to similar

tools. Readers are referred to the references in these closely

related papers for a more comprehensive list of works.

Wilcox [11] presents a longitudinal study analyzing the ef-

fectiveness of automated testing in an introductory computing

course. His grading software is comparable to our CODE plug-

in but is primarily focused on Java programming language.

From an analysis of over 1,000 student performance over 6

semesters, Wilcox concludes that automated testing improved

overall average scores, reduced withdrawal rates, and reduced

grading times [11]. A similar experience has been reported

by Sherman et al with their auto-grading framework called

“Bottlenose”. They too observed an increase in submission

rates, These two works provide strong support in favor of

our CODE plug-in. Wilcox also presents a survey of testing

strategies used by software for automatic grading of student

programs [12]. Our CODE plug-in includes and enables several

of the testing strategies, including: output comparison, stream

control, object instantiation, instrumentation, reflection, and

code analysis.

Peveler et al discuss the use of their auto-grading system

called “Submitty” [10]. Similar to our CODE plug-in, Submitty

also permits assessment of programs in different languages.

However, unlike CODE that provides a simple interface to

instructors to setup assignments and tests, Submitty requires a

JSON input to be developed. Peveler et al also discuss a recent

upgrade to Submitty in which they provide a performance

comparison using Docker containers [9]. The use of Docker

containers is similar to our approach, but with the difference

that CODE uses a Docker swarm, which further reduces cost

to spin-up containers.

Carbunescu et al discuss the issues involved in designing

auto-grader for parallel code on the massively parallel XSEDE

environment [2]. In contrast, our system is currently focused

on running serial programs in different languages. Junival and

colleagues propose and assess an automatic grading system

called CPSGrader for cyber-physical systems [6]. Their work

focuses on developing testing strategies in the context of

programming robots. On the other hand, our CODE plug-

in is purely focused on software testing, but in different

programming languages.

Danutama and Liem [4] discuss their approach of integrat-

ing their auto-grading system into Moodle Learning Man-

agement System (LMS). They use a software bridge named

“dispatcher” to loosely-couple Moodle and their autograder

called LX. The “dispatcher” manages interactions between

Moodle and LX. In contrast, CODE uses OAuth for integrating

with Canvas LMS. Moreover, CODE uses a Docker swarm and

Docker services for grading submissions.

IV. COURSE & ASSESSMENT SETTINGS

The proposed Code Assessment Extension (CODE) plug-

in has been used to teach a systems course (1 semester, i.e.,

15 weeks) with heavy emphasis on programming in C++.

The topics in the course include core Operating Systems

(OS) concepts, including multiprocessing, multithreading, and

virtualization [3]. The concepts were applied in the context

of networking and web-services to develop custom servers.

This one semester-long course (15 weeks) consisted of 54

students with junior standing from 3 specializations, namely:

computer science (42), software engineering (5), and computer

engineering (7) students. The 3-credit hour course included

2-hours of lectures and one 2-hour laboratory session each

week. The use of the CODE plug-in was introduced in the

second week of the course as part of a lab exercise. Subsequent

labs did not involve the use of the plug-in, primarily due to

the nature and time constraints in lab sessions. However, all

programming homework projects involved the use of the plug-

in to submit solutions in the form of C++ source code.

The CODE plug-in was used for assessment of 6 separate

homework in the course. Homework was not assigned during

weeks around 2 midterm exams and during Thanksgiving

break. The students had 7 days to complete each assignment

that was due at midnight. However, the complexity of the

assignments varied throughout the course, with complexity

generally increasing as enumerated below:

1) File processing and operations on unordered_map

2) Printing process hierarchy from a file

3) Develop a custom shell using fork & exec

4) Custom Common Gateway Interface (CGI)

5) Multithreaded text file processing

6) Monitoring processes in virtual machine via /proc

In addition to a comprehensive description of the require-

ments, each homework included expected outputs from tests.

Each homework also included “base test cases” – i.e., minimal

functionality that the program must accomplish in order to earn

any points for the homework. These base test cases serve two

key purposes. The first purpose is to motivate the students to

learn the core concepts. In addition, they clarify that skeleton

programs will not earn points.

The students were permitted an unlimited number of sub-

mission trials via the CODE plug-in until the stipulated dead-

line for each homework. The course used NetBeans as the

recommended Integrated Development Environment (IDE). In

addition, NetBeans and the CODE plug-in were configured

to have identical settings to streamline student experience. The

students were permitted to ask questions and clarifications at

any time via online discussion forums. The students routinely

solicited help from the instructor during office hours, for 4-

hours each week. In addition, students also had access to 12

total hours of teaching assistant’s office hours. Collectively,

these resources were intended to facilitate learning and foster

student success.

V. RESULTS AND DISCUSSIONS

The CODE plug-in was used for automated assessment of

student submissions for 6 homework assignments. In total,

students submitted over 3,300 submissions as part of the 6

homework, with different number of submissions per-student

for each homework. All of the submissions are retained in

the CODE plug-in’s database. The database also includes

metadata about the submissions, including the time when the

submissions were made. Figure 3 shows the distribution of the

number of submissions as recorded in the database. There was

one student who used 221 submissions for HW #5 and this data

point is a conspicuous outlier and is not included in Figure 3.

As illustrated by the shape of the violin plots in Figure 3,

most of the students required several submissions for each

homework. The number of submissions for each student was

clustered around the averages for each homework. However,

several students required considerably more number of tries

as indicated by the long tails on these distributions. The tails

are longer for the latter assignments reflecting the trend of

increasing complexity as the semester progresses. The total

number of submissions (value for N in Figure 3) and the

mean number of submissions-per-student reflect this trend,

with the Mean increasing from 6.13 to 13.95. However, HW

#4 was a larger term project and consequently, the average

number of submissions (Mean: 18.77) was higher. The

data in Figure 3 suggests that the average number of tries

by the students reflected the complexity of the assignments.

Possibly, this information can be used as a pseudometric to

assess relative complexity of assignments.

A. Analysis of grades versus submission counts

An interesting question that arises in this context is the

possibility of a correlation between the number of submissions

versus the overall grade of students – i.e., “Do students who

perform well use more or fewer number of submissions per

homework?” In order to explore this question, the degree of

correlation between the total number of submission and the

average of submissions-per-homework was analyzed. The cor-

relogram in Figure 4 illustrates the results from this analysis.

In this chart, the Score parameter corresponds to the final

weighted score for each student in the course. The parameters

TotSubs and AvgSubs corresponds to the total number of

submissions (for all 6 homework) by each student and the

average number of submissions-per-homework respectively.

2 1

4
6

19 19

Score

0
1

0
0

2
0

0

●
●●●● ●●

●
●

● ●
●

●●●● ●●
●

●

●

●
●● ●

●●
●●●●

●
●

●
● ●●

●
●● ●●

●

●
●●

●●

●

●

●

50 70 90

● ●
●●

●
●●

●
●

● ●
●

●●
●● ●●

●

●

●

●
●● ●

●●
●●

●●
●

●

●
● ●●

●
●● ●●

●

●

●●

●●

●

●

●

0 100 200

0.32
p = 0.020

25

18

5

1 1 1

TotSubs

●●
●●
●
●●

●
●

●●
●

●●
●●●●

●

●

●

●
●●●
●●
●●
●●

●
●

●
●●●
●
●●●●

●

●

●●

●●

●

●

●

5
0

7
0

9
0

0.27
p = 0.058

0.99
p = 0.000

0 20 40

0
2

0
4

0

30

15

4
0

2

AvgSubs

F
re

q
u

e
n

c
y

T
o

tS
u

b
s

TotSubs

Score AvgSubs

Fig. 4. Analysis of correlation between overall scores and number of
submissions

The correlogram in Figure 4 shows only a weak correlation

between the final scores of students and the submission param-

eters. The Pearson correlation coefficient between scores and

the total number of submissions per student was the higher of

the two at 0.32 (p=0.020). The correlation between scores and

the average number of submissions-per-homework is weaker

at 0.27 (p=0.058). The LOESS curve (in Figure 4) for the

score parameter shows two distinct regions with low corre-

lation, i.e., relatively flat line. These two regions correspond

0
2

0
4

0
6

0

HW #1 HW #2 HW #3 HW #4 HW #5 HW #6

●
● ●

●

●
●

N=319
Mean: 6.13

SD: 5.01
Max: 24

N=357
Mean: 7.14

SD: 6.17
Max: 30

N=400
Mean: 8.89

SD: 7.28
Max: 33

N=901
Mean: 18.77

SD: 15.78
Max: 73

N=516
Mean: 10.75

SD: 11.98
Max: 63

N=600
Mean: 13.95

SD: 12.49
Max: 58

N
u

m
b

e
r

o
f

s
u

b
m

is
s

io
n

s
p

e
r

s
tu

d
e

n
t

Fig. 3. Distribution of number of submissions for each homework with 1 outlier removed

to students with a lower (score < 70) and higher (score >

85) scores. The observation suggests a piecewise trend, with

students at either extreme requiring about the same number

of trials. However, this trend could be an artifact of the skew

in scores as illustrated by the score histogram. Most of the

students performed well in the course (typical of higher-level

course with mostly majors) with only a few underperforming

students.

B. Analysis of submission patterns

A key characteristic that is of interest, particularly to in-

structors, is the work patterns of students. The submission

timestamp metadata in the CODE database provides an insight

into the work culture and habits of students at an institution.

The charts in Figure 5 illustrate the submission patterns

observed for the 6 homework assignments. In these charts, the

x-axis shows the relative submission time with respect to the

deadline – i.e., the zero value on the x-axis is the submission

deadline. Students had a week to work on each assignment.

The blue curves (in Figure 5) illustrate the submission

trends for each homework. Note that the total number of

submissions is not the same for each homework.

The charts for the six assignments show a pretty consistent

pattern where most of the submissions are received in the day

before the deadline. Across all six assignments, the average

submission time was ~17.5 hours before the deadline, with

over 62% of the submissions occurring in the last 8 hours. The

submission patterns are consistent immaterial of the increasing

complexity (see Figure 3) of the assignments. The students

were informed about the increasing complexity but had no

perceptible change in submission patterns. The data strongly

suggest that students actively work on assignments just before

the deadlines. Consequently, software systems such as the

CODE plug-in need to be designed with an emphasis on

managing peak loads.

C. Analysis of start and finish times

A key aspect that is stressed to ensure student success is to

start working early on homework assignments as it provides

the following benefits to students – ① it enables the students to

plan and invest their time better, time, ② it permits the students

to review selected topics for the assignment, and ③ solicit help

from the instructor, TAs, or via online forum to troubleshoot

issues. For each homework, students were reminded to start

early to gain the aforementioned benefits. The statistics in

Table I presents the student responses to these topics. The data

was collected via an anonymous survey administered towards

the end of the course. The data essentially reflects the students

perception of their work habits.

Most of the students (~69%) disagreed or were neutral

that they invested time to review material outside of class.

Importantly, most of the students did not even review the

short (~2 minutes) tutorial videos outside of class. This

data suggests that students would need increased help with

learning, applying, and retaining knowledge. Importantly, only

about 32% of the students feel that they start work early

TABLE I
STUDENT FEEDBACK ON ASSIGNMENT EFFORTS FROM ANONYMOUS

END-OF-COURSE SURVEY LEGEND: SD: STRONGLY DISAGREE, D:
DISAGREE, N: NEUTRAL, A: AGREE, AND SA: STRONGLY AGREE.

Survey question Response (N=47)

Every week, I review lecture slides and
watch handout videos outside of class

SD D N A SA
0

15

30

6
14 12 11

4

I start early on programming projects and
plan my time

SD D N A SA
0

15

30

1

13
18

12
3

I actively seek help from the instructor via
online forums or during office hours. time

SD D N A SA
0

15

30

2

13 11
16

5

on assignments. However, 45% of the students felt that they

actively seek help from the instructor to troubleshoot issues.

This is consistent with the instructor and TAs observations

that there is a rush to seek help on the day assignments were

due. Sadly, this trend did not change throughout the semester.

Even students who underperformed in the course continued

their pattern of delayed started despite being unsuccessful at

completing earlier assignments.

1) Analysis of grades versus start and finish times: The

observation of delayed starts (see Table I) and the large volume

of submissions (see Figure 5) leads to the question of impacts

on student grades. Consequently, we also pursued an analysis

of a student’s overall scores versus the timestamp of their

first and last submission for each homework. We hypothesized

that earlier start times would be a strong indicator of higher

scores. The histogram in Figure 6 illustrates the submission

times for the first and last submissions by each student. The

histograms show average (from all 6 assignments) first and

last submission times for all 50 students in the course. Each

bar in the histogram corresponds to 5-hour intervals, with zero

on x-axis corresponding to the submission deadline.

The histograms in Figure 6 shows that a large fraction of the

students have the final submissions in the last 5 hours prior

to the deadline. However, many students do have their first

submissions coming in early, with ~20% of the first submis-

sions occurring 48 hours before the deadline. The Correlogram

in Figure 7(a) illustrates the correlation between the overall

final scores versus the first and last submission times for each

student. Both score vs. the last submission and score vs.

the first submission show only a weak correlation of 0.37

(p-value of 0.007) and 0.39 (p-value of 0.004) respectively. In

other words, the first and last submission times are not a strong

indicator of overall student success. However, the LOESS curve

(in bottom-left corner of Figure 7(a)) for score vs. the

first submission suggests a trend in the data.

The chart in Figure 7(b) shows a zoomed-in version of

correlogram between score and time for the First sub-

mission. In this chart, the range of overall final scores has

 2 4 6

HW #1
Subs.: 298

 2 4 6

HW #2
Subs.: 341

 2 4 6

HW #3
Subs.: 487

 2 4 6

HW #4
Subs.: 1097

 2 4 6

HW #5
Subs.: 484

 2 4 6

HW #6
Subs.: 580

Number days before deadline for each assignment

Fig. 5. Plot of submission times with reference to deadlines. Colors correspond to different students in the course. The y-axis has no unit but all submissions
for a student are on one horizontal line. (Subs. indicates the number of submissions)

Hours before deadline

F
re

q
u
e
n
c
y

0 50 100 150

0
5
0

1
0
0

Last submission

First submission

Fig. 6. Histogram of average submission times w.r.t deadlines

2 1

4
6

1919
Score

0
2

0
4

0
6

0

●

●

●
●●

●

●

●

●
●

●

● ●
●●●

●

●

●

●●

●

●● ●

●
●

●

●
●

● ●●
●

● ●
●

●
●●

●
●●

●

●●
●

●

●
●

●

50 80

●

●

●
●● ●

●

●

●
●

●

● ●

●●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●● ●●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

0 30 60

0.37
p = 0.007

38

6
222001

Last

●

●

●
●●
●

●

●

●
●

●

●●

●●
●

●

●

●

●●

●

●
●
●

●

●
●

●
●●●●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

5
0

7
0

9
0

0.39
p = 0.004

0.73
p = 0.000

0 40 100

0
4

0
8

0

32

10

3
5

0 1

First

F
re

q
u

e
n

c
y

T
o

tS
u

b
s

Last (hours)

Score AvgSubs

(a) Correlogram

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

60 70 80

2
4

6
8

1
0

1
2

1
4

Score

F
ir
s
t

s
u

b
m

is
s
io

n
(h

o
u

rs
 b

e
fo

re
 d

e
a

d
lin

e
)

R=0.59

(b) Sub-range

Fig. 7. Correlogram of scores vs. first & last submission times

been restricted to 50 <score <85. This range of scores

restricts to students who have a B or lower grade in the course.

This range of scores vs. time of the First submission

shows a much stronger correlation of 0.59. This data indicates

that the time for the first submission is a good predictor of

student performance, for middle-tier students. In this context,

it is important to note that we are discussing an interesting

correlation and not causation – i.e., we are not concluding that

students underperform because they start late on assignments.

D. Analysis of student perceptions

The data in Table II summarizes student perceptions about

the effectiveness of automatic grading performed via the

CODE plug-in. The feedback was obtained from students as

part of the anonymous survey (same one used for data in

Table I) conducted at the end of the course. The results for

the last question in Table II clearly shows that a majority (>

77%) of the students perceived that automatic testing had a

strong positive effect on their learning. In addition, almost

80% of the students agreed that automatic testing helped to

reduce errors in their program, with < 10% disagreeing on this

question. As expected, the majority of the students agreed that

they liked getting early feedback, with only 2% of the students

disagreeing on this question.

One minor concern that was observed on the student survey

was regarding their reliance on automated testing. About 60%

of the students indicated that they have come to rely on the

tests run by the CODE plug-in to verify their solutions. On one

hand, it can be argued that students have access to a tool and

they are using it effectively. On the other hand, having students

perform tests on their own is equally important. Striking a

balance on this topic would be ideal.

VI. CONCLUSIONS

The rapid growth in demand for computing across college

campuses is challenging instructional resources. The chal-

lenges have motivated the use of automatic testing tools, par-

ticularly in programming centric courses. This paper presented

an automatic testing and grading software system called Code

Assessment Extension (CODE). CODE has been developed

as a plug-in to our current Canvas Learning Management

System (LMS). Our plug-in has been used to teach a Systems

TABLE II
STUDENT FEEDBACK ON AUTOMATIC GRADING FROM ANONYMOUS

END-OF-COURSE SURVEY LEGEND: SD: STRONGLY DISAGREE, D:
DISAGREE, N: NEUTRAL, A: AGREE, AND SA: STRONGLY AGREE.

Survey question Response (N=47)

I think automatic testing has helped reduce
errors in my program

SD D N A SA
0

15

30

0
4 6

28

9

I liked getting early feedback whether I have
met most (if not all) program expectations
via automated testing.

SD D N A SA
0

15

30

0 1
10

20
16

I have come to rely on some of the au-
tomated testings to check if my program
actually works as expected

SD D N A SA
0

15

30

1
8 10

21

7

Overall I think the automatic testing has
helped me improve my programs/solutions.

SD D N A SA
0

15

30

1
6 4

23

13

2 course, which has a heavy emphasis on programming in

C++. The paper provided a detailed analysis of quantitative

metrics elicited from over 3,300 student submission. The paper

also discussed qualitative feedback collected from the students.

Collectively, our analysis supports the following inferences:

• Automatic testing is imperative because only 30% of

the class agreed they regularly review course materials

and consequently, rigorous testing and quick feedback is

essential to motivate learning.

• In the anonymous survey, over 85% of the students indicated

that they have a good understanding of testing and they were

emphatic that they thoroughly test their programs prior to

submission. Yet, on average, students used 10 submissions

(median is 7) per program, indicating a dichotomy between

student perceptions and student performance in practice. The

data suggest that an automatic testing system is an important

component to improve the quality of solutions.

• The average number of tries by the students reflected the

complexity of the assignments. Possibly, this information

can be used as a pseudometric to assess relative complexity

of assignments.

• In the survey, ~70% of students indicated they start early on

programs. Yet the submission patterns suggest that student

start much later, often just the day assignments are due.

Most of the testing activity occurred just a few hours before

the deadline. This observation further adds support that

automatic testing is an important tool as it can provide quick

feedback to help students as they are rushing to submit

solutions.

• In the survey, ~80% of the students had developed a positive

opinion about automated testing. They indicated that they

have come to rely on CODE to ensure their programs work

as expected and to help reduce errors.

• CODE provides a convenient highlight-and-annotate feature

to provide feedback to students. However, the instructor’s

experience suggests that students do not pay attention to

feedback if it is collapsed in the User Interface (UI).

Consequently, having non-collapsible UI may be for the

better for feedback.

• A majority of the submissions are received in the last few

hours before deadlines. Consequently, it is imperative that

tools are carefully designed to handle peak loads rather than

focusing on average characteristics.

• Students were introduced to CODE via a short video and

they practiced using it in one lab session prior to using it for

homework. The brief introduction to working with the plug-

in was sufficient for students to learn to work with CODE,

suggesting that the plug-in is relatively easy for students to

learn and use.

The student surveys and statistics from student submissions

show that automatic testing is an important component in

a programming course. Combined with student surveys the

statistics expose interesting discrepancies between student

perceptions of self-effort and attitude versus their manifes-

tations in practice. Faculty experience suggests that automatic

testing helps to improve the overall quality of solutions and

learning outcomes. Overall the students have a very positive

opinion on automatic testing. Almost 80% of the students

indicated that they have come to rely on automatic testing

and agree it helps improve their learning. However, from an

instructor perspective, this is a “double-edged sword” – having

students rely too much on tools could be impacting longer-

term learning outcomes – and a longitudinal study would be

necessary to assess this concern.

Overall the results from a slew of quantitative and qual-

itative analysis provide strong, positive support for the im-

portance and effectiveness of automatic testing enabled via

the CODE plug-in. The plug-in required about 6 months of

development time by a small team, with essentially just 1

developer, 1 accessibility specialist, and 1 part-time system

administrator. We are planning on motivating further use of

the CODE plug-in in other courses. We also envision to make

it available as a Free and Open Source Software (FOSS) for

use by other educational institutions.

SUPPLEMENTARY MATERIALS

Video demonstrations and tutorials for CODE, from both

instructor and student perspectives, are available online at:

https://code.cec.miamiOH.edu/code.

ACKNOWLEDGMENTS

We would like to thank faculty and staff in eLearning and

Miami University IT for their help and support in certifying

and deploying the CODE plug-in.

REFERENCES

[1] B. Bakhshinategh, O. R. Zaiane, S. ElAtia, and D. Ipperciel, “Educa-
tional data mining applications and tasks: A survey of the last 10 years,”
Education and Information Technologies, vol. 23, no. 1, pp. 537–553,
Jan 2018.

[2] R. Carbunescu, A. Devarakonda, J. Demmel, S. Gordon, J. Alameda,
and S. Mehringer, “Architecting an autograder for parallel code,” in
Proceedings of the 2014 Annual Conference on Extreme Science and

Engineering Discovery Environment, ser. XSEDE’14. New York, NY,
USA: ACM, 2014, pp. 68:1–68:8.

[3] CSE Department, “Removed for double blind review,” 2019. [Online].
Available: Removedfordoubleblindreview

[4] K. Danutama and I. Liem, “Scalable autograder and
lms integration,” Procedia Technology, vol. 11, pp. 388
– 395, 2013, 4th International Conference on Electrical
Engineering and Informatics, ICEEI 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2212017313003617

[5] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of
recent systems for automatic assessment of programming assignments,”
in Proceedings of the 10th Koli Calling International Conference

on Computing Education Research, ser. Koli Calling ’10. New
York, NY, USA: ACM, 2010, pp. 86–93. [Online]. Available:
http://doi.acm.org/10.1145/1930464.1930480

[6] G. Juniwal, A. Donzé, J. C. Jensen, and S. A. Seshia, “CPSGrader: Syn-
thesizing temporal logic testers for auto-grading an embedded systems
laboratory,” in 2014 International Conference on Embedded Software

(EMSOFT), Oct 2014, pp. 1–10.
[7] National Academies of Sciences Engineering & Medicine, Assessing

and Responding to the Growth of Computer Science Undergraduate

Enrollments. Washington, DC: The National Academies Press, 2018.

[8] NCES, “National center for education statistics (NCES): Degrees
in computer and information sciences conferred by postsecondary
institutions,” 2018. [Online]. Available: https://nces.ed.gov/programs/
digest/d18/tables/dt18 325.35.asp

[9] M. Peveler, E. Maicus, and B. Cutler, “Comparing jailed sandboxes
vs containers within an autograding system,” in Proceedings of the

50th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’19. New York, NY, USA: ACM, 2019, pp. 139–145.
[Online]. Available: http://doi.acm.org.proxy.lib.miamioh.edu/10.1145/
3287324.3287507

[10] M. Peveler, J. Tyler, S. Breese, B. Cutler, and A. Milanova, “Submitty:
An open source, highly-configurable platform for grading of program-
ming assignments (abstract only),” in Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education, ser.
SIGCSE ’17. New York, NY, USA: ACM, 2017, pp. 641–641.

[11] C. Wilcox, “The role of automation in undergraduate computer science
education,” in Proceedings of the 46th ACM Technical Symposium on

Computer Science Education, ser. SIGCSE ’15. New York, NY, USA:
ACM, 2015, pp. 90–95.

[12] C. Wilcox, “Testing strategies for the automated grading of student
programs,” in Proceedings of the 47th ACM Technical Symposium on

Computing Science Education, ser. SIGCSE ’16. New York, NY, USA:
ACM, 2016, pp. 437–442.

