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ABSTRACT

Rollbacks are the most prevalent mechanism to maintain causal consistency in parallel optimistic simu-
lations, specifically in Time Warp synchronized simulations. Despite their pronounced significance, thus
far we have not had a study to fundamentally measure and characterize the two key metrics of rollbacks,
namely — @ inter-rollback cycles, i.e., how many event processing cycles elapse before a rollback occurs,
and @ rollback lengths, i.e., how many cycles does a rollback cancel. This study proposes an experimental
method to characterize rollbacks via statistical analysis. We have conducted experimental analyses using
a widely used synthetic benchmark called PHOLD. We have conducted 1000s of simulations with different
combinations of PHOLD settings on two different computational-clusters to analyze rollback-profiles of a
broad spectrum of parallel simulation configurations. Our analysis shows that both rollback metrics are
geometrically distributed with their aggregate characteristics following a normal distribution. Interestingly,
the overarching metrics from 500 different simulation configurations are also normally distributed.
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1 INTRODUCTION, BACKGROUND, AND MOTIVATION

Parallel Discrete Event Simulation (PDES) is a widely used methodology for accelerating simulations of
large, complex models. PDES meets this primary objective by harnessing the computational power of many
interconnected computers or computational clusters. For PDES, a model is partitioned into independent
parallel processes running on different compute nodes. The processes interact with each other by exchanging
discrete timestamp events. The parallel processes in a PDES operate asynchronously. However, to maintain
causality, i.e., the correct order of event processing, the processes have to be synchronized with each other.

There are two major categories of synchronization approaches, namely: conservative and optimistic meth-
ods (Jafer, Liu, and Wainer 2013). Recently, the number of cores, CPU speeds, and RAM capacity of
clusters have grown dramatically. This growth has catalyzed increased attention on optimistic synchroniza-
tion approaches because they have shown to deliver improved scalability and performance (Yeom, Bhatele,
Bisset, Bohm, Gupta, Kale, Marathe, Nikolopoulos, Schulz, and Wesolowski 2014, Rao 2016). The most
widely used algorithm for optimistic synchronization is the Time Warp algorithm.
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1.1 Background and Terminology on Time Warp

In Time Warp a PDES is organized as a set of independent Logical Processes (LPs) that interact with each
other by exchanging virtual timestamped events. Each LP “optimistically” (i.e., as quickly as it can) pro-
cesses events scheduled for it and advances its Local Virtual Time (LVT). Events are processed in “cycles”,
with each cycle involving the processing of concurrent events — i.e., events with the same virtual timestamp.
Event processing also includes the generation of new events and saving its state. Since LPs optimistically
advance, an LP may receive events in the past. That is an LP at LVT4 can receive an event from LPg with
timestamp < LVT. Such an event is called a straggler and signifies a causal violation.

Accordingly, to recover from the causal violation, the LP triggers a rollback mechanism which involves
three key steps. First, the LP uses the saved states to revert back to a LVT prior to the causal violation.
Second, the LP cancel events sent earlier using anti-messages, which in turn can cause further rollbacks.
Finally, the LP reprocess messages in their correct time stamp order. Rollbacks are manifestations of the
synchronization overheads in a Time Warp PDES.

1.1.1 Key rollback metrics

There are two key metrics associated with rollbacks, namely:

1. Inter-rollback cycles: This is the number of event processing cycles (a cycle involves processing 1 or
more concurrent events) that are completed between rollbacks. This metric essentially describes the
frequency of rollbacks as experienced by an LP. This metric is independent of LVT as LVT advancement
is arbitrary and depends on the model.

2. Rollback length: The number of event processing cycles reverted by a rollback is called the rollback
length. This essentially determines the wasted work that has to be canceled due to a rollback.

1.2 Motivation for the proposed work

Rollbacks are overheads of optimistic synchronization and need to be controlled to enable efficient, high-
performance PDES. Consequently, rollback management has been an active area of research for over two
decades now. Many investigations have proposed different static and adaptive methods for managing roll-
backs and mitigating their negative impacts. However, literature characterizing the two fundamental metrics
of rollbacks is scarce, if not absent. Having a sound, clear understanding of rollback characteristics is im-
portant for the following reasons: @ Having a model of rollback characteristics enables researchers and
practitioners of PDES to utilize the knowledge to assess and optimize their PDES platforms. @ Having a
generic reference model for comparison enables systematic and scientific analysis of rollbacks and associ-
ated issues. @ It provides explanatory power to reason about observed patterns — a weak analogy would be
to compare it with the big-O notation in computing, which facilitates reasoning about the performance of
algorithms. @ The characteristics can be used to develop straightforward approaches to mitigate rollbacks,
possibly even in hardware, and inspire and inform novel approaches. ® It can be used to generate data for
training and calibrating adaptive algorithms for controlling optimism. ® By-products of analysis can also
be used to assess the effectiveness of computational platforms for PDES.

1.3 Contributions of this paper

Motivated by the aforementioned reasons this paper proposes an experimental and statistical method in
Section 5 for characterizing the two key metrics of rollbacks in optimistic simulations. The simulator and
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synthetic benchmark used in this study are discussed in Section 3 and Section 4 respectively. The proposed
method is validated using results from experiments conducted on two different compute clusters with 500
different parallel simulation configurations. Section 6 presents the experiments and results obtained by
applying our method. Our experiments show that the proposed methodology elicits an effective summary
of rollback characteristics. Key assumptions underlying our results are discussed in Section 7. Section 8
concludes the paper with a discussion on the key findings along with pointers to future work.

2 CLOSELY RELATED PRIOR RESEARCH

The topic of monitoring and mitigating the impact of rollbacks in optimistic PDES is an active area of re-
search and has been ongoing for over two decades. Hence, there is a rich history and depth of literature
on this topic (Jafer, Liu, and Wainer 2013). Consequently, detailed coverage is beyond the scope of this
paper and we only focus on closely related research. Readers are referred to citations in our references for a
literature trail on this topic. Recently, Wilsey (2016) proposed a DESMetric project to enable quantitative
modeling of simulations by generating a profile of their execution. This study has a similar theme except
we focus on rollbacks and developing a simplifying statistical model for it. Prior investigations by Quaglia
(2015), Carothers and Perumalla (2010), Ferscha and Luthi (1995), Chetlur and Wilsey (2006), and Liu
and Wainer (2009) all involve analysis and management of rollback characteristics with the objective to im-
prove memory and/or run time overheads of a Time Warp simulation. In contrast to these investigations, the
focus of this paper is to fundamentally characterize rollback behaviors on contemporary hardware platforms.

3 MUSE: A PARALLEL SIMULATOR o 06 Py
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sage Passing Interface (MPI) library. MUSE uses the
Time Warp algorithm with state saving approach to Figure 1: Overview of a parallel MUSE simulation

accomplish optimistic synchronization. A concep-

tual overview of a parallel MUSE simulation is shown in Figure 1. A MUSE simulation is organized as a
set of Logical Processes (LPs) that interact with each other by exchanging virtual timestamped events. An
LP is implemented as a C++ class by overriding necessary methods in an Agent base class. The input,
output, and state queues used for rollback operations in Time Warp are managed by the Agent base class
in coordination with the simulation kernel.

The simulation kernel implements core functionality associated with LP registration, event processing, state
saving, synchronization, and Global Virtual Time (GVT) based garbage collection. The kernel also handles
the task of interacting with MPI for exchanging events between LPs on different MPI-processes. The kernel
uses a centralized Least Timestamp First (LTSF) scheduler queue for managing pending events and schedul-
ing event processing for local LPs. In the context of this study, the events exchanged by LPs are broadly
classified into the following two categories:

1. Local events: Events exchanged between LPs on the same MPI-process are called local events. In MUSE,
all local events are directly managed by the centralized LTSF scheduler. Furthermore, LPs are permitted
to generate events only into the future — i.e., the timestamp on events must be greater than their Local
Virtual Time (LVT). Consequently, local events are always processed in correct causal order and cannot
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trigger (or initiate) a rollback. In other words, if all events in a simulation are local events, then the
simulation would essentially simplify to just a set of sequential simulation. However, if a rollback is
triggered due to a “remote” event, then local events can cause cascading rollbacks. Consequently, local
events are included in our rollback characterization method.

2. Remote events: Events exchanged between LPs on different MPI-processes are called remote events.
These events are exchanged via MPI calls and can be “stragglers” — i.e., have a timestamp below the LVT.
Consequently, in MUSE only remote events are the primary triggers of rollbacks. However, note that when
an LP rolls back, it can induce cascading rollbacks in other LPs to which it has scheduled local events in
the future.

Another key aspect of MUSE that influences rollback behavior is its event delivery policy. In MUSE, concur-
rent events (i.e., events with the same receive timestamp) are delivered to be processed as a single batch.
Such a batch wise processing of concurrent events is important and streamlines many modeling scenarios,
including digitial logic simulations, epidemic simulations (Rao 2016), etc. Since concurrent events are de-
livered in a single batch, zero-length rollbacks occur in MUSE. A zero-length rollback occurs when a straggler
event with timestamp ¢, arrives to an LP with LVT of ¢, (i.e., the LP has just finished processing events with
timestamp #,).

4 PHOLD BENCHMARK

The experimental analyses in this paper have been con-
ducted using a synthetic benchmark called PHOLD. Proposed
by Fujimoto (1990), PHOLD is widely used in PDES in-
vestigations because it has shown to effectively emulate the
steady-state phase of a broad range of model (Franceschini,
Bisgambiglia, and Bisgambiglia 2015, Higiro, Gebre, and
Rao 2017). A key advantage of PHOLD is that it includes a
variety of settings that can be used to configure the bench-
mark to mimic characteristics of different real world models.
Our PHOLD benchmark provides several parameters (speci-
fied as command-line arguments) summarized in Table 1.
The benchmark consists of a 2-dimensional toroidal grid of
interacting Logical Processes (LPs). Figure 2 illustrates a configuration in which the LPs have been parti-
tioned into 4 processes. The dimensions of the torus is specified via the rows and cols parameters. The
total number of LPs in the simulation is rows X cols. By default, LPs are evenly partitioned across the
MPI-processes used for simulation. However, the imbalance parameter is used to influence the partition,
with larger values skewing the partition such that more LPs are assigned to some partitions as summarized
in Figure 3(a). In this study we vary imbalance by +25% to reflect practical parallel simulation settings
where the load is reasonably balanced.

Figure 2: Example PHOLD simulation
with 4 parallel MPI-processes)

The PHOLD simulation commences with a fixed number of events for each LP, specified by the
eventsPerLP parameter. This parameter influences the number of concurrent events received by an LP,
which in turn impacts rollback characteristics. For each event received by an LP a fixed number of trigono-
metric operations determined by value of granularity parameter are performed to place CPU load. In
this study, the granularity has been varied from O to 50 to reflect both fine-grained and coarse-grained
simulations.

For each event, an LP schedules another event to a randomly chosen adjacent LP determined by
recvr—distrib and recvr-range parameters. The selfEvents parameter controls the fraction
of events that an LP schedules to itself. The event timestamps are determined by a given delay-distrib



Rao

Parameter Description Parameter Description
TOwWs Number of rows in model. cols Number of columns in model.
events-— Initial number of events per LP. simEnd- Simulation end time.
PerLlP Time
delay- Event timestamp distribution* recvr-— Receiver ID distribution — one
distrib distrib of: “local-remote”, ‘“uniform”,
“poisson”, or “exponential”
$self- Fraction of events LPs send to
Events themselves.
delayorA Parameter for distribution speci- recvr-— Parameter for distribution speci-
fied by delay—-distrib. range fied by recvr—-distrib.
granu- Additional compute load per imbal- Imbalance in partition, i.e., more
larity event. ance LPs on some MPI-processes.
remote— Fraction of remote events when
events recvr—-distribis local_-
remote

Table 1: Parameters in PHOLD benchmark
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Figure 3: Impact of varying key parameter values in the PHOLD model

and delay (A) parameter as summarized in Figure 3. Our PHOLD benchmark supports three prevalent
types of distributions, namely: uniform, exponential, and poisson. The uniform distribution
pattern is often observed in digital logic simulations where logic gates exchange events between a fixed
number of adjacent gates. The poisson distribution commonly occurs in queuing systems and network
models (Carothers, Fujimoto, Lin, and England 1994). The exponential distribution is commonly used
to mimic processes in which events occur independently at a given mean rate.

The combination of parameters can be used to model different interaction patterns and simulation-time
behaviors of various models. Specifically, combinations of these parameters influence the number of con-
current events (i.e., events with the same timestamp) that are scheduled to be processed by a given LP. The
number of concurrent events also strongly influences rollback probabilities in parallel simulation. More-
over, the parameter settings can also be used to reflect both “strong scaling” and “weak scaling” scenarios
as discussed in Rao (2018).

S METHODS

Rollback characteristics are primary described using two key attributes, namely rollback frequency and roll-
back length. In our method, rollback frequency is determined by the number of simulation-cycles that elapse
before a logical process (LP) experiences a rollback. Note that each schedule involves an LP processing 1 or
more concurrent events (i.e., events with the same timestamp). The rollback length indicates how far back in
virtual time a rollback resets the LVT. For example, assume LP, optimistically completes event processing
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for four cycles at LVTs {5, 7, 10, 12}. Note that each cycle involves an LP processing 1 or more concurrent
events (i.e., events with the same timestamp). Now, assume a straggler event is then received at LVT 11. In
this scenario, the inter-rollback cycles (first metric) is 4 cycles and the rollback length (second metric) is 1,
because only one cycle is rolled-back. An overview of our proposed experimental method to characterize
rollbacks is summarized in Figure 4. Our method involves 6 steps as discussed below:

Step 1: Instrumentation — The first step is to instrument the parallel simulator to record rollback occurrences.
A key aspect of this instrumentation is it should be minimally intrusive to ensure that the instrumentation
does not skew the behavior of the simulation. In our simulator, we have used two strategies to minimize
intrusion. First, we record statistics in an internal memory buffer. We periodically write the buffer to local
temporary storage on each compute node.

Step 2: Run simulation and gather profile — In this step a specific configuration of the simulation is executed
k times and rollback profiles are recorded for further analysis.

. Step 2: Run (

Step 1: Minimally ; Step 3: Perform . Step 5: Perform
intrusive il o uto Correlation : aggregate
intrusi PH&E;\meS Auto Correlati Step4erlfagform ﬁ geregat

instrumentation of Function (ACF) o AR rollback
: 2 parameter : distribution fits. T .
simulation settings analysis. distribution fits.

Step 6: Repeat simulations with different
parameter settings to analyze different
configurations.

Figure 4: Overview of proposed methodology for characterizing rollbacks in parallel simulations

Step 3: Auto-Correlation Function (ACF) analysis — Prior to fitting statistical distributions, it is important to
establish that the samples are independent — i.e., for a given agent, the rollbacks are mutually independent.
In this study we have used the standard Auto-correlation Function (ACF) analysis approach to determine
if inherent correlations exists between rollbacks. Auto-correlation is computed by sliding the sequence of
inter-rollback cycles, 1 at a time (i.e., lag of 1), and comparing them against the original sequence to compute
the Pearson correlation coefficient.

Independence of the rollback occurrences is established by comparing the auto-correlation coefficients
against 95% significance (a = 0.05) ACF threshold computed as +2/+/N, where N is the number of obser-
vations. The method is based on the statistical inference that — if a time series is completely random, and
the sample size is large, the lagged-correlation coefficient is approximately normally distributed with mean
0 and variance % Accordingly, if a large number of auto-correlation values are below the ACF threshold
then the observations are deemed purely random or independent. The ACF analysis needs to be performed
for each agent that experiences rollback and collectively analyzed to ensure the data is amenable to further
statistical analysis.

Step 4: Per-LP statistical distribution fitting — Having established overall independence of samples, we pro-
pose to use statistical distribution to summarize the observed inter-rollback cycles and rollback lengths.
Fitting statistical distributions to the observed data has been conducted using R version 3.2.1 and the
fitdistrplus package. We analyzed several different statistical distributions, including: Exponential,
Poisson, Negative binomial, Geometric, Normal, Uniform, and Weibull using Maximum Likelihood Estima-
tion (MLE) method for fitting. Among the standard distributions, the Geometric, Exponential, and Poisson
distributions were the only ones that provided sufficiently low Standard Error (SE) among the various fits.
The distribution with the lowest SE is chosen for each LP that experiences rollbacks. In our experiments the
Geometric distribution yielded the best fit for per-LP inter-rollback cycles in almost all of the configurations
explored in this study.
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Step 5: Aggregate distribution fitting — The previous step yields statistical approximations of rollback char-
acteristics on a per-LP basis. Consequently, there could be 1000s of such fits. In this step, we perform a
second level of statistical fitting to elicit aggregate characteristics. First, the per-LP fits from the previous
step are separated into distinct sets based on the best fitting distribution types. Next, statistical fitting is
performed for each set to identify aggregate characteristics. In our experiments, the Geometric distribution
was the only set of per-LP fits that needed to be analyzed. We found that the probability of Geometric dis-
tributions (g,) of inter-rollback cycles and rollback lengths followed a Normal distribution, i.e., g, ~ Ng,,

where N, = N (L, GgZ,,)-

Step 6: Simulation configuration exploration — The previous steps are performed for a broad range of param-
eter settings to explore different simulation configurations. For each configuration, the previous three steps
are repeated to obtain aggregate fits. The aggregate fits from many configuration are collectively analyzed
to draw inferences and characterize rollbacks in parallel optimistic simulations. In our study, we performed
a third-level of fitting and found that i, also follow a Normal distribution as shown in Section 6.

6 EXPERIMENTS AND RESULTS

The methodology discussed in Section 5 has been used to characterize rollbacks. Specifically, profiles of
rollbacks has been collected through minimally intrusive instrumentation of MUSE kernel. A broad range
of PHOLD parameter settings (see Section 4) have been used to mimic a diverse set of parallel simulation
configurations. The experiments have been conducted on the following two different computational clusters
for cross-validation and robustness —

1. RedHawk cluster: Each compute node has two 12-core Intel Xeon Gold 6126 (Skylake) CPUs 2.6
GHz (with hyperthreading disabled) for a total of 24-cores per compute node. Each compute node has
96 GB of DDR4 memory in Non-Uniform Memory Access (NUMA) configuration. The compute nodes
are interconnected by 10 Gigabit Ethernet and run CentOS version 7.6. Our simulation software was
compiled using GCC version 6.3 (at —O3 optimization level) with OpenMPI version 4.0.

2. Owens cluster: Each compute node has two 14-core Intel Xeon E5-2680 v4 (Broadwell) CPUs 2.4 GHz
(hyperthreading disabled) and 128 GB of RAM in NUMA configuration. The interconnect on this cluster
is 100 GBPS Infiniband network and runs RedHat Enterprise Server version 7.5. On this cluster, our
simulation software was compiled using Intel Compiler Collection (ICC) version 16 (at —O3 optimization
level) with mvapich2 MPI-library version 2.2.

6.1 Overview of per-LP rollback characteristics

The profile of rollbacks for an LP (id=8287) in a parallel simulation of 10,000 LPs using 6 MPI-processes
is shown in Figure 5. The chart shows rollback profiles from 5 different runs were recorded and averaged
for statistical analyses. Outlier data is not shown in these charts for readability. The chart in Figure 5(a)
shows the raw rollback data with y-axis showing the number of event processing cycles that elapsed before
the rollback occurred. Recollect that each cycle involves an LP processing 1 or more concurrent events (i.e.,
events with the same timestamp). Figure 5(a) shows the number of schedules between each consecutive
rollback for an agent (agent id = 8287) in the simulation. However, what is not apparent in Figure 5 are
zero-length rollbacks. That is, several rollbacks occur consecutively before the next cycle of forward event
processing.

Figure 5(b) shows a histogram of the inter-rollback event schedules averaged from 5 independent replica-
tions of the simulation for the agent. The histogram is color-coded based on the frequency of occurrences,
with rollback length of 2 being the cycles the most frequent for this specific agent. Figure 5(c) shows a more



Rao

25 ' Inter-follback eveht cycles (N5491) ' 90 T lLP' 8|287 T T 200 i 12
@ Distr=exponential (delay=10), LP=8287, Procs=6) 80 - : b 10
s 201 1 70 150
> 7]
S g 60 4 8
5 15T T $ 50 &
[ [J]
g S a0 100 £ 6
S 10 - @ g
E ' 30 50 o 4
% 5 | 4 20
k= 10 2
0 Il 1 1 1 1 1 1 1 1 o 0
0 50 100 150 200 250 300 350 400 450 500 0 2 4 6 8 10 12 0
Rollback index number Inter-rollback cycles LP: 8287
(a) Inter-rollback schedules (b) Viewed as histogram (c) Coded

Figure 5: An example of rollbacks observed for an LP during a parallel simulation. (b) shows a histogram
of the inter-rollback cycles color coded based on the frequency of occurrence. (c) shows the histogram a
color-coded bar with colors representing frequency.
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compact representation of the histogram from Figure 5(b) color-coded to show higher and lower occurrence
frequencies for different inter-rollback cycles.

The compact representation introduced in Figure 5(c) has been used to enable visualization of data for all
LPs that experience rollbacks, in Figure 6. The LPs that do not experience rollbacks are shown as dis-
continuities on the x-axis. The chart in Figure 6 shows the 7 distinct regions from the 6 process parallel
simulation. The 7th region, involving agents 9600-9999, arises due to wrap around in the torus struc-
ture of the PHOLD model. The agents that are at the inter-process (accomplished via MPI) communication
boundaries of the model experience higher rollback frequencies. Conversely agents further away from the
inter-process communication boundaries experience fewer rollbacks.

6.2 Example results from Auto-correlation Function (ACF) analysis

Prior to fitting statistical distributions, ACF analysis has been used to ensure that the data samples are inde-
pendent — i.e., for a given agent, the inter-rollback cycles are mutually independent. The chart in Figure 7(a)
shows the ACF corresponding to the rollback profile in Figure 5. The chart in Figure 7(a) shows the resulting
auto-correlation values with lag extended to 50% of the number of observations. In this example, the result-
ing ACF value is 100% —i.e., all of the auto-correlation coefficients are below the ACF threshold of +0.097,
N = 425), leading us to infer that the inter-rollback cycles are independent. Independent observations do
not have correlations between samples and are amenable to be fitted to classic statistical distributions.
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Figure 8: Result of statistical fits for inter-rollback cycles

The chart in Figure 7(b) shows the ACF values for all the agents that experience rollbacks in the simulation.
ACF was not computed for agents with fewer than 20 rollbacks to avoid spurious outliers in statistical
analyses. As illustrated by the chart, for most of the agents, their rollback characteristics do not have much
auto-correlation with ACF values above 80%. However, some of the rollbacks do show stronger correlations
due to two reasons — @ there were very few rollbacks for some of the agents causing them to be outliers in the
data and ® some agents send events to themselves, and hence event exchange patterns of agents have some
correlation. Consequently, rollbacks used for event cancellation also reflect this characteristic. Overall
the chart in Figure 7 shows that the rollback characteristics show independence (i.e., they are randomly
distributed) and are amenable to further statistical analyses.

6.3 Results from per-LP statistical distribution fitting

Having established overall independence of the inter-rollback schedules, the next step (i.e., Step 4 from
Section 5) is to identify a suitable statistical distribution to characterize the data. The chart in Figure 8 shows
example results from statistical fitting for the same LP (id=8287) from earlier subsections. As illustrated
by the chart, the geometric distribution is the best fit, with only a small Standard Error (SE) of 0.015. The
Q-Q plots show good agreement with higher frequency regions (0 to 10) but deviate at longer inter-rollback
lengths due to fewer samples in those regions as this agent does not experience long inter-rollback cycles.
However, the empirical vs. theoretical quantiles and the P-P plot show good agreement with the statistical
fit to a Geometric distribution.

The results from fitting statistical distributions to all of the agents experiencing rollbacks is a given simula-
tion is shown in Figure 9. As illustrated by the Standard Error (SE) curves (plotted against Y 1-axis), overall
the Geometric distribution had the lowest errors for all of the 3800 agents that experience rollbacks in this
specific run. The exponential distribution was a close second. The Poisson distribution did not fit the data at
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Figure 9: The overall Standard Error (SE) observed from statistical fittings for the agents experiencing
rollbacks in the simulation. LPs that do not experience rollbacks are not shown.

all. The chart in Figure 9 also shows the probabilities for the Geometric distributions for each of the agents
(in light orange impulses, i.e., I) plotted against the Y2-axis.

Interestingly, the rollback lengths also had a similar characteristic with the geometric distribution best fitting
the observations. Moreover, the data from both Owens and RedHawk clusters showed similar characteris-
tics across the broad range of configurations explored on both clusters.

6.4 Per-simulation aggregate statistical distribution fitting results

The next step in our method, namely Step 5, involves fitting a distribution to aggregate rollback charac-
teristics. In this step, we explored different distributions and identified that the Normal distribution best
characterizes both inter-rollback cycles and rollback lengths as illustrated by the charts in Figure 10.
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Figure 10: Aggregate fit of rollback characteristics for all LPs in one simulation configuration.

6.5 Multi-configuration statistical analysis

The final step of our methodology involves analyzing the aggregate fits from multiple simulation configura-
tions. We have explored a broad range of simulation configurations on both clusters, including @ varying
number of compute nodes (1-4), ® varying processes per-node (2-8), & varying number of LPs (between
2,500-250,000), @ varying simulation end times (300-1000), ® varying optimism time window (10-1000),
® the scheduler queue (3tHeap or 2tLadderQ (Higiro, Gebre, and Rao 2017)), and @ various PHOLD
parameters in Table 1 introduced in Section 4. Overall we have explored over 500 different combinations
on both clusters, with 5 simulations per combination resulting in a total of 10,000 independent replications.
The combinations have been generated using Sobol random numbers to enable systematic exploration of the
multidimensional parameter space.

For each parameter-combination, the per-LP geometric fits for inter-rollback cycles and rollback lengths
were computed. Next, the aggregate per-simulation Normal distribution fit was computed as shown in
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Figure 11: Aggregate fits for mean () of Normal fits from 500 configurations on 2 different clusters

Figure 10. The distribution fits from each simulation configuration were collectively analyzed to elicit over-
arching characteristics of rollbacks from all 500 different configurations, as summarized in Figure 11. As
illustrated by the charts in the figure, overall rollback characteristics on Owens show a normal distribution
but with slight skews. The overall fits for RedHawk are similar, except for the rollback lengths which are
sharply skewed left due to a much longer tail.

On both clusters, the inter-rollback frequencies are slightly skewed to the left indicating that most rollbacks
occur often. This inference is also supported by the rollback histogram of all LPs shown in Figure 6. The
frequent rollbacks occur at the MPI-process boundaries because in MUSE only remote events can trigger
rollbacks. On the other hand, LPs away from the process boundaries experience rollbacks less frequently.
The inter-rollback cycles mean on Owens and RedHawk are comparable. Similarly, the rollback length
characteristics (Figure 11(b) vs. Figure 11(d)) on these two clusters are comparable. However, the overall
rollback length on RedHawk is spread over a much wider range (0.0-08) versus that on Owens (0.0-0.4).
The longer rollbacks suggest that straggler events are arriving much later on RedHawk when compared to
Owens. This observation is very symptomatic of the slower interconnect (10 GBPS) on RedHawk than the
one on Owens (100 GPBS). Nevertheless, the overall patterns elicited by our approach on the two clusters
are consistent. Importantly, the results bolster the applicability of our proposed method for characterizing
rollbacks in optimistic parallel discrete event simulations.

7 ASSUMPTIONS AND LIMITATIONS

The approach for characterizing rollbacks is general purpose and can be applied to any optimistic parallel
simulator and its models. Nevertheless, in this study, we applied our approach and conducted experiments
using MUSE and PHOLD. Consequently, our experiments implicitly involve assumptions and circumscribe
the inferences that can be drawn from the results, as follows — @ This study assumes a standalone paral-
lel simulation that does not involve any external interactions, such as human-in-the-loop simulations. @ A
key aspect of the parallel simulator used in this study is that only remote events (i.e., events received from
a different MPI-process) can trigger rollbacks. This study assumes that there are no other external sources
(such as human-in-the-loop simulations) that can trigger rollbacks. ® In our study we do include zero-length
rollbacks as MUSE processes concurrent events as a single batch. However, if a parallel simulator does not
involve zero-length rollbacks, then their rollback profiles could be different. @ The rollback characteriza-
tion methodology is broadly applicable. However, the experiments reported in this paper are based on a
synthetic benchmark called PHOLD. Although, PHOLD is widely used as a representative benchmark in the
parallel simulation community for different analyses, it is still not an actual model. It is possible that an
actual model could experience different rollback characteristics. @ In continuation with the previous item,
our experiments used parallel simulations in their nominal operating conditions — i.e., the load is reasonably
balanced (we have explored some skew), the rollbacks are reasonably bounded (we have explored different
bounds), computational resources such as CPU, RAM, disk, network are in nominal operating conditions
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etc. These settings reflect typical operating conditions in which parallel simulations would be used. If the
operating conditions skew significantly then the rollback characteristics could be different. ® It is also im-
portant to add that our experiments were conducted on contemporary computational clusters. Consequently,
significant changes to the hardware platform would also influence the observed rollback characteristics. @
Our experiments have explored p processes (1 < p < 8) running on n compute-nodes (1 < n < 4) for a
maximum of 32 parallel processes. Scaling-out to much larger configurations could impact the rollback
characteristics.

8 DISCUSSIONS AND CONCLUSIONS

The overall efficiency and performance of a Parallel Discrete Event Simulation (PDES) is strongly influ-
enced by synchronization overheads. In the case of optimistic PDES, the synchronization overheads mani-
fest themselves in the form of rollbacks. Consequently, having a strong understanding of rollback behaviors
is critical to enable efficient and performant optimistic PDES.

Accordingly, this paper proposed an experimental method for characterizing rollbacks. Our method has
six key steps in which begins with instrumentation and collecting data on two key metrics, namely: inter-
rollback cycles and rollback lengths. In the next step, statistical fitting is used to summarize the raw data
at LP-level. We found that geometric distribution best fit both metrics. In the next step, we summarize the
rollback characteristics for all LPs to obtain a simulation-level summary. At a simulation level, we found a
normal distribution best summarized the means of the geometric distributions of the two metrics. In order
to further analyze rollback patterns, we collectively analyzed 500 different simulation configurations on
two different computational clusters. Our analysis showed that, immaterial of the hardware and simulation
configuration, the overall rollback characteristics do follow statistical patterns.

Establishing sound, clear rollback characteristics enables investigators and practitioners of PDES to utilize
this knowledge and our method to assess and optimize their PDES platforms. Comparing their rollbacks to
nominal behaviors can facilitate identification of performance and efficiency bottlenecks. The data can also
be used to develop, train, and calibrate adaptive algorithms for effectively managing optimism. The proposed
methodology can also be used for selecting of suitable hardware configurations for a given application. For
example, the experiments also highlight the advantage of investing in a higher-speed interconnect. The
owens cluster with its 100 GPBS interconnect enables reducing both the inter-rollback cycle frequencies
and the rollback lengths. This translates to faster, more efficient optimistic parallel simulation performance,
as evidenced by the overall faster runtime of 37.13 seconds on owens (Broadwell running at 2.4 GHz)
versus an overall 80.54 seconds on RedHawk (a newer Skylake, running at 2.6 GHz).

8.1 Future work

We are currently pursuing Generalized Sensitivity Analysis (GSA) to identify both platform and model pa-
rameters that have a strong influence on the rollback characteristics. It would also be beneficial to analyze
the correlation between inter-rollback cycles and rollback lengths to determine if a relationship exists. In-
tuitively, LPs that frequently rollback, i.e., have a smaller inter-rollback cycle, would have shorter rollback
lengths. However, this intuition needs to be validated. We also plan to utilize our findings to implement
an adaptive optimism management algorithm to reduce rollbacks and thereby improve the overall efficiency
and performance of parallel discrete event simulations.
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