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To design vaccines and mitigate epidemics, evolutionary characteristics of avian influenza viruses 
are typically studied through longitudinal surveillance and serological assays. However, such in vivo 
analysis is often reactive and limited due to the complexities and costs of long-term, multinational 
surveillance. A novel in silico approach combines two different agent-based simulation methods to 
help inform vaccine design.

A
vian influenza is caused by several serotypes of the influenza A viruses (including the dominant 
H5N1 strain) that are endemic in migratory waterfowl, the natural intercontinental vectors of 
these viruses.1 The avian influenza virus (AIV) transmits to poultry via contaminated water and 
feed, causing widespread mortality and resulting in severe economic losses, including the 2015 

US epidemic. AIVs cause recurring epidemics because they undergo continuous change in the haemmag-
glutinin (HA) surface protein. Changes to HA cause antigenic drift, which enables new strains to escape 
host immunity, ultimately causing new infections. Infected hosts shed viruses with changes to HA, giving 
rise to more diverse strains. As Figure 1 illustrates, the cycle continues with the establishment of new viral 
lineages; strain prevalence varies both temporally and spatially throughout the world.

Vaccination is the most prevalent prophylactic method for containing avian influenza epidemics.1 Vac-
cines are designed from several ancestors of the prevalent viral strains circulating in the host population. 
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These prevalent strains are identified in vivo through 
surveillance, sampling, sequencing, and phylogenet-
ic analysis. As of December 2014, the World Health 
Organization (WHO) recommends 27 different 
H5N1 vaccine candidate strains for different parts 
of the world to immunize against prevalent strains 
from 14 different clades in the WHO H5N1 no-
menclature phylogram.1

However, continuous antigenic drift in viruses 
requires candidate strains and vaccines to be up-
dated every six to eight months,2 posing significant 
national and international challenges to surveil-
lance, sequencing, and analysis efforts. Moreover, 
the in vivo vaccine candidate strain selection 
method is reactive and typically lags an outbreak 
by 10 to 18 months, degrading vaccine efficacy and 
impeding effective containment of emergent epi-
demics. Furthermore, in vivo sampling and analy-
sis doesn’t provide a comprehensive understanding 
of the ecological factors influencing evolutionary 
processes and epidemic progressions, thereby hin-
dering design and administration of prophylaxis or 
containment strategies.

These aforementioned shortcomings of the 
traditional in vivo approach can be alleviated by 
enhancing them using in silico or computational 
methods, thereby informing vaccine design for rap-
idly evolving lineages to improve vaccine efficacy, 
using antigenic drifts and environmental factors to 
determine frequency of vaccine redesign in different 
geographic regions, identifying high-risk regions 
for antigenic shift and increased surveillance, and 
identifying influential ecological and epidemio-
logical factors to mitigate their impacts and contain 
epidemics. Specifically, our investigation proposes 
a novel multidisciplinary approach that combines 
two different agent-based simulation methods, 

namely, epidemiological simulation and phylogeo-
graphic annotations to identify high-risk countries, 
and phylodynamic simulations to elicit AIVs evolu-
tionary characteristics in high-risk countries.

Background
Computational epidemiology integrates computer 
science and classical surveillance-based epidemiol-
ogy to enable comprehensive understanding of dis-
eases, epidemic forecasting, and administration of 
prophylactic strategies. It’s fundamentally based on 
modeling and simulation (M&S) with agent-based, 
discrete modeling methods being widely used. An 
agent models epidemic progression in a single in-
dividual or a collection of individuals along with 
pertinent ecological processes and interactions. The 
de facto standard for modeling epidemics is the 
compartmental model, in which the population is 
subdivided into independent subsets or compart-
ments based on their epidemiological states, such as 
susceptible (S), exposed (E), infective (I), and recov-
ered (R), or SEIR. Disease progression is modeled via 
probabilistic transitions between the compartments.

SEARUMS, the M&S environment used in 
this study, utilizes agent-based modeling and par-
allel discrete event simulation (PDES) to enable 
rapid epidemiological analysis.3,4 The agents and 
migratory flyways are generated by using surveil-
lance data available in GIS format. The agents in 
the SEARUMS model the migratory life cycle of 
a flock of waterfowl of the same species and imple-
ment the SEIR compartmental model to character-
ize epidemic progression. Agents interact with each 
other when flocks logically overlap to propagate 
epidemics during and after migration. Aggregation 
of many birds into a single agent has been adopted 
to reduce computational resources and simulation 
runtime, which can be significant for larger mod-
els even when PDES techniques are utilized.4 The 
waterfowl model used in this study has been gen-
erated, verified, and validated as discussed in our 
earlier publications3,5 and supplements. This inves-
tigation utilizes a validated model from our earlier 
investigations5 to identify highly connected coun-
tries involved in the spread of H5N1 and uses phy-
lodynamics to elicit evolutionary characteristics of 
H5N1 viruses in these high-risk countries.

Phylodynamics is a special case of computa-
tional epidemiology that combines phylogenetics 
with epidemiological modeling and simulation to 
simultaneously analyze the phenotypic and geno-
typic evolution (see Figure 2).6 Specifically, agents 
model both epidemic progression as well as abstract 

Figure 1. Overview of the genetic and antigenic diversity in avian influenza 

viruses (AIVs) that arise due to repeated epidemics. Prevalent strains 

are identified in vivo through surveillance, sampling, sequencing, and 

phylogenetic analysis.
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changes occurring in viral genotypes, which are 
sampled during simulation to construct a phyloge-
netic tree or phylogram (see Figure 2). Ecological 
parameters in the simulation are set such that the 
in vivo and in silico phylograms are similar, thereby 
validating the phylodynamic model. The calibrated 
model provides information about unobservable or 
unknown in vivo ecological parameters. The mod-
el is also used to analyze the effect of influencing 
ecological parameters via vaccination or other pro-
phylactic strategies via varying parameter settings. 
Extending the simulation time to logically simulate 
into the future provides forecasts about anticipated 
evolutionary changes to assist planning.

As summarized by Erik Volz and colleagues,6 
Bryan Grenfell and coauthors6 postulated the the-
ory and general approach for phylodynamic model-
ing, whereas our research focuses on its application 
to AIVs. Neil Ferguson and colleagues6 as well as 
Katia Koelle and coauthors6 discuss the use of phy-
lodynamic simulations and sensitivity analysis to 
identify the role of ecological factors in the spread 
of influenza A infections, particularly in humans. 
Trevor Bedford and colleagues7 use a phylodynamic 
model of influenza A evolution to show that few an-
tigenic dimensions are sufficient to account for the  
paradoxically limited diversity of H3N2 human  
influenza strains, whereas Benjamin Roche and 
coauthors8 discuss extensive validation of their 
individual-based phylodynamic model. In a recent  
article,9 they present the use of phylodynamic anal-
yses to assess the impact of antigenic, epidemiologi-
cal, and ecological factors to explain higher genetic 
diversity and weaker immune escape in avian influ-
enza viruses when compared to human strains.

Unlike earlier investigations6–9 that focus on 
or involve human influenza strains, our research 
focuses on avian influenza, specifically H5N1. This 
investigation distinguishes itself from prior work, 
including our own,3,5 by combining phylodynam-
ics with results from phylogeography. This research 
utilizes a validated model of migratory waterfowl to 
identify key countries with many direct infection 
pathways for H5N1 to other countries. Because 
highly connected countries influence global diversi-
ty of viruses, they’re deemed high-risk regions; this 
study uses phylodynamic simulation to quantify the 
ecological characteristics underlying the evolution 
of H5N1 strains in these high-risk countries. The 
phylodynamic modeling and simulation extends 
validated models proposed by Bedford and col-
leagues7 by explicitly modeling multiple high-risk 
waterfowl species native to each country. The results 

from phylogeographic and phylodynamic analyses 
are then used to infer epidemiological, ecological, 
and temporogeospatial characteristics to inform 
vaccine design and prophylaxis in each country.

Methodology
The proposed method for identifying high risk 
countries and eliciting H5N1 evolutionary char-
acteristics in them consists of two distinct phases  
(see Figure 3).

Phase 1: Identifying High-Risk Countries
The high-risk countries used in this study have 
been identified via epidemiological simulations of 
migratory waterfowl conducted via SEARUMS,3 
an ecological and epidemiological modeling and 
analysis system developed in Java.5 SEARUMS in-
cludes tools for generating epidemiological models 
of migratory birds from GIS data obtained from the 
Global Register of Migratory Species (GROMS) 
database.10,11 The process of generating the model 
from GROMS GIS data is discussed in our earlier 
publication.11 Figure 4a illustrates the generated 
model for one waterfowl species, but SEARUMS 
has been used to generate a model that includes all 
22 high-risk waterfowl species involved in the global 
dispersion of H5N1 as shown in Figure 4b.12 Each 
agent in the model, shown as a circle in Figure 4, 
represents a flock of collocated birds that migrate as 
a unit. Lifecycle activities, migratory behaviors, in-
teragent interactions, and epidemic progressions are 
accomplished via the exchange of discrete events.

Generation of infection graph. The epidemic spread is 
simulated for a period of five years by introducing an 
initial infection seeded in Guangdong, China, cor-
responding to the H5N1 nomenclature phylogram.1 

Figure 2. Overview of using phylodynamic simulation to infer ecological 

properties. agents model both epidemic progression as well as abstract 

changes occurring in viral genotypes, which are sampled during simulation to 

construct a phylogenetic tree or phylogram.
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SEARUMS tracks and annotates infections occurring 
between pairs of agents during simulations to gener-
ate an infection graph at the end of the simulation. 

The resulting directed acyclic graph (DAG) shows lo-
cations where the flocks originate as nodes with edges, 
indicating direct infection between pairs of locations. 
The stochastic nature of simulations requires 25 runs; 
edges that occur in the majority of simulations are 
retained as the dominant infection pathways. Each 
simulation run requires about 5.5 hours when using 
eight threads on an Intel Core i7-3770K CPU at 3.5 
GHz and about 4 Gbytes of RAM.

Phylogeographic annotation of infection graph. The 
phylogeographic method for validation discussed in 
our earlier publication5 has been adapted to annotate 
edges in the infection graph using clades constituting 
the complete H5N1 nomenclature phylogram from 
World Health Organization (WHO)/World Orga-
nization for Animal Health (OIE)/Food and Agri-
culture Organization of the United Nations (FAO).1 
Each clade contains in vivo viral samples with less 
than 1.5 percent difference in nucleotides from vari-
ous countries. An edge is assigned to a clade if the 
clade contains strains from the two countries con-
nected by an edge. The annotation is based on the  
inference that genetically similar viruses from two 
different countries require a direct vector and pathway  
to enable their dispersion.  For example, the infection 
pathway between 〈30°52'12''N, 28°22'14.5194''E〉 
and 〈36°41'4.9194''N, 36°41'4.9194''E〉 is geocoded 
to Matruh, Egypt, and Mugla, Turkey, respec-
tively, with annotation to clade #2.2.1, which con-
tains H5N1 HA sequences from Egypt and Turkey 
with a less than 1.5 percent difference: A/duck/
Egypt/08355S-NLQP/2008 and A/chicken/
Turkey/Ipsala563/2008. Figure 4c shows the re-
sulting annotated infection graph.

Identification of high-risk countries. Phylogeographi-
cally annotated edges are strong evidence supporting  
infection pathways and are used to assess influence 
of countries. The diagram in Figure 5 summarizes 
the number of annotated edges (from Figure 4c) 
between pairs of countries.  The countries involved 

Figure 3. Overview of the key steps in the proposed methodology that combines epidemiological, phylogeographic, and phylodynamic 

analysis (high-resolution image in supplementary materials at http://pc2lab.cec.miamioh.edu/documents/cise16_suppl.pdf).
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in the highest number of intercountry infections 
are deemed “high risk” because outbreaks can re-
sult in maximum dispersion of novel viral strains. 
The high-risk countries are CHN (China, 14), TUR 
(Turkey, 7), VNM (Vietnam, 6), RUS (Russia, 6), 
and NGA (Nigeria, 4), where the value in parenthe-
ses is the number of other countries to which viruses 
are dispersed. Most of these countries had two or 
just one other directly connected country. China 
and Russia weren’t used for further analysis due to 
lack of sufficient in vivo samples and low geospatial 
resolution of annotation when compared to the size 
and geographic diversity reported elsewhere. Conse-
quently, the phylodynamic analysis to elicit H5N1 
characteristics are focused on the other three coun-
tries, namely, Turkey, Vietnam, and Nigeria.

Phase 2: Phylodynamic Simulation
The second phase commences with construction of 
the reference in vivo phylograms shown in Figure 6 
for Turkey, Vietnam, and Nigeria. The in vivo phylo-
grams are used to compare with the in silico phylo-
grams and validate the phylodynamic simulation 
and the parameters settings. The phylogenetic trees 
for the three countries were generated using the same 
procedure used by WHO/OIE/FAO.1 Full-length 
HA segments (more than 1,600 nucleotides) were 
obtained from the GISAID EpiFlu database13 and 
were collected between 2005 and 2009. The HA se-
quences were aligned using MUSCLE14 and the phy-
logenetic trees were constructed with PAUP*15 using 
neighbor-joining and the same standard GTR+I+Γ 
model as WHO/OIE/FAO.1,5 The newick form of 
the phylogram generated by PAUP* was used to cat-
egorize leaves into clades such that percentage pair-
wise nucleotide distances between and within clades 
are more than 1.5 percent and less than 1.5 percent, 
respectively, concordant with WHO/OIE/FAO 
clade definition criteria.1 The clades in the trees are 
shown in different colors (colors aren’t significant) in 
Figure 6, with Turkey, Vietnam, and Nigeria having 
2, 26, and 4 clades, respectively—that is, Turkey has 
the lowest genetic diversity of H5N1 strains while 
Vietnam has the highest diversity among the three 
countries. The depth of the branches between each 
pair of sequences is proportional to the number of 
nucleotide differences between them.

Phylodynamic model and assumptions. The phylody-
namic model and simulator used in this study have 
been developed in Java by enhancing the Antigen7 
simulator. Antigen has been developed for phy-
lodynamic analysis of human influenza, with the  

following features added to extend it for avian in-
fluenza analysis: simulation of multiple species with 
different birth and death rates; births occurring 
only during specific brooding seasons rather than 
throughout the year; genetic and antigenic prop-
erties of viruses modeled independently; antigenic 
distances between simulated HA strains estimated 
by using a cross-immunity approach; phylogenetic 
trees constructed based on genetic differences rath-
er than difference in emergence times; and infec-
tion rates and infective periods accounting for sea-
sonal variations in the countries.

Unlike SEARUMS, the phylodynamic simu-
lator uses an individual-based approach. The 
epidemiological properties of each individual is 
characterized using the standard SIS (susceptible 
→ infected → susceptible) compartmental model 
summarized in Figure 7. The SIS model is used 
due to the endemic nature of H5N1 in waterfowl, 
resulting in very low mortality rates. The model 
doesn’t include human interactions because infec-
tions in humans are very sporadic, and human-hu-
man transmission is unsustained.5,9 Consequently, 
humans don’t play a role in antigenic diversity in 
viruses9 and aren’t included in our model.

Hosts in each species are added during their re-
spective brooding season to model births (at rate µb) 
and removed throughout the year to model deaths 
(at rate µd). Average lifespan of different species 
(see column LS in Table 1) has been used to deter-
mine birth and death rates so as to maintain bird  

Figure 5. Infection pathways between pairs of countries. 

High-risk countries are in red.
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populations at the end of each year. Infection 
spreads from an infective host to a susceptible host 
based on the contact rate β and seasonal sinusoidal 
modulation with amplitude Ω as shown in Figure 
7. Seasonal modulation9 has been used to account 
for influence of temperature on viral durability on 

surfaces where birds come in contact with each 
other.

The viral phenotypes are modeled using ab-
stract 2D vectors similar to the approach used by 
Bedford and colleagues.7 Mutations in the viruses 
shed by hosts are uniformly distributed through-
out the strain at the rate of ψ. Mutations essentially 
change the coordinates of the viruses in the ab-
stract 2D space. This enables Euclidean distances 
to be mapped to antigenic change using the meth-
od proposed by Julia Gog and colleagues, which is 
used by other investigators as well.7,9 The antigenic 
parameters proposed by Roche and colleagues9 for 
H5N1 have been used in the simulations so that an 
antigenically different1 strain that isn’t present in 
the host’s immune history causes new infections. 
Host immune history drives the viral selection pres-
sure, causing specific serotypes to establish in the 
waterfowl population. The viruses are periodically 
sampled during simulation (similar to the in vivo 
sampling process) to yield the in silico phylogenetic 
tree at the end of the simulation. The phylogenetic 

Figure 6. Reference in vivo phylogenetic trees generated using the procedure recommended by the WHO/OIE/FAO H5N1 evolution group.1 The 

clades in the trees are shown in different colors (colors aren’t significant), with (a) Turkey, (b) Vietnam, and (c) Nigeria having 2, 26, and 4 clades, 

respectively—that is, Turkey has the lowest genetic diversity of H5N1 strains while Vietnam has the highest diversity among the three countries.
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Figure 7. Overview of conceptual SIS (susceptible → 

infected → susceptible) model. The model doesn’t 

include human interactions because infections 

in humans are very sporadic, and human-human 

transmission is unsustained.
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tree construction uses genetic distances between 
viruses along with common ancestor information 
to produce the phylogram. The simulation uses 
Gillespie’s stochastic simulation algorithm (SSA) 
along with Tau-Leap optimization and a time step 
of 0.1 days8 to ensure accurate simulations.

The design of the phylodynamic model in-
volves the following domain-specific assumptions 
and limitations:

■■ It doesn’t explicitly model the influence of sea-
sonal migration on contact rates (β) and uses β 
as an aggregate parameter. 

■■ Birth (µb) and death (µd) are set such that the 
overall population of each species (and conse-
quently their relative fractions; see Table 1) is 
maintained in each year of simulation. How-
ever, over 15-year periods, the relative fraction 
of bird species can vary, which isn’t modeled. 

■■ The role of temperature and environmental up-
take is only implicitly modeled as modulation 
on contact rate (β) and therefore their influ-
ence can’t be separately assessed.

Phylodynamic model validation. We used the same 
validation procedure proposed by Roche and col-
leagues8 to validate our multispecies phylodynamic 
model by comparing the results against the exten-
sively validated phylodynamic model from Bed-
ford and colleagues7 (referred to as the “reference 
model”). For validation, we created a multispecies 
model, but with all the species having identical pa-
rameter settings to compare against the original 

single species model. The chart in Figure 8a shows 
a comparison of the 95 percent confidence interval 
(CI) from 250 replications of the stochastic simula-
tion over a period of the years. The red line in the 
chart shows the percentage difference between the 
average number of infective individuals. Figure 8b 
compares antigenic diversity in the reference model 
versus the multispecies models. Antigenic diversity 
directly determines the number of clades in the 
resulting phylogram. Note that the 95 percent CI 
of the reference and multispecies models are very 
close and overlap each other in Figure 8.

The box plots in Figure 9 show the results from 
statistical comparison of key epidemiological and 
antigenic attributes, namely, peak infection, peak 
infection day, and antigenic diversity.  The p-values 
from Kolmogorov-Smirnov (KS) two-sample tests 
conducted on the reference and multispecies model 
were greater than 0.05, establishing that the vali-
dated reference and proposed multispecies models 
are statistically indistinguishable. Similar com-
parisons were conducted for different settings of 
parameters to ensure that the epidemiological and 
antigenic results from the reference and proposed 
multispecies models were statistically the same, 
thereby establishing the validity of salient aspects 
of the multispecies model. 

Next, the influence of varying brooding peri-
ods and seasonal modulation was verified using a 
metamorphic validation approach.16 Specifically, 
the brooding period for one species was modified to 
be 10 days earlier when compared to the reference 
model. Results from 250 stochastic simulations  

Table 1. Population distribution (N = 20,000 for all three countries) and brooding period of high-risk 
waterfowl species identified using GIS data from the GROMS database.

Waterfowl species Life span (years) Brood time

Population fraction

Vietnam Turkey Nigeria

Eurasian wigeon (A. Penelope)   2.02 Feb.–Apr. 0.75 0.74 0.15

Common teal (A. Crecca)   2.5 Dec.–Feb. 0.02 0.02

Northern pintail (A. Acuta)   3 Feb.–July 0.05 0.04 0.06

Tufted duck (A. Fuligula)   3.5 Feb.–Apr. 0.02 0.02

Northern lapwing (V. Vanellus)   3.5 Apr.–July 0.15

Black godwit (L. Limosa) 18 Feb.–Apr. 0.15 0 0.13

Ruff (P. Pugnax)   4.4 Mar.–Jun. 0.62

Common gull (L. Canus) 10 Mar.–Apr. 0.05 0.03
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were used to verify that the peak infection day 
correctly changed on an average by 5.9 ± 4.41 days 
as per expectation. Similarly, the influence of 0.1 
sinusoidal modulation on contact rates was veri-
fied to introduce the expected 10 percent sinusoi-
dal change in infection patterns as shown in Fig-
ure 10, thereby establishing the proposed model’s 
validity.

Per-country models. The three independent phylo-
dynamic models for Turkey, Vietnam, and Nige-
ria involve different subsets of high-risk waterfowl 
species found in those countries (see Table 1). The 
waterfowl species in the different countries and 
their relative populations were extracted from the 
GROMS GIS dataset.10 The brooding seasons and 
average life spans of the waterfowl have been ob-
tained from various data sources aggregated in the 
animal diversity database maintained by the Uni-
versity of Michigan.17 The average infective dura-

tion, that is, the time during which an infected bird 
can spread infection to other birds, is five days.9

The ecological parameters in the per-country 
phylodynamic model whose values aren’t known 
and can vary between countries include

■■ Contact rate β, the average number of birds that 
can get infected each day by another infective 
host, has been estimated at 2.847 contacts/day18 
on average in small lakes. This value is used as the 
reference to determine contact rate via calibration.

■■ Mutation rate ψ is the average number of mu-
tations per day in the HA segment of viruses 
shed by infective hosts. The diversity in ecosys-
tems, climatic conditions, and bird species give 
raise to different mutation rates for the viruses 
in different countries. 

Several investigations19 have analyzed the evo-
lutionary rate of the HA segment of H5N1 viruses 
and have consistently reported the following per-
site/year (τ) mutation rates: Turkey (17.8 to 2.06), 
Nigeria (1.62 to 4.05), and Vietnam (15.81 to 
18.65). The per-site/year values are converted to ψ, 
the daily mutation rate using the relationship ψ = 
1,800τ ÷ 365, where 1,800 is the average number 
of nucleotides in HA.

The actual values for β and ψ for each coun-
try are determined via calibration, which requires 
a systematic search of the parameter space based on 
their estimated values. Note that additional combi-
nations of β and ψ (beyond estimated ranges) could 
yield in silico phylograms with the same number of 
clades and properties as in vivo phylograms. How-
ever, such combinations of β and ψ that are beyond 
the estimated range of values can’t be substantiated 
with observed data and aren’t biologically meaning-
ful. The seasonal temperature in Turkey and Viet-
nam, for example, swings considerably (from 16 °C 
to 29 °C), which influences environmental viral du-
rability and consequently the spread of epidemics. 
Accordingly, for these two countries, the contact 
rate β is scaled by a seasonal sinusoidal modulation 
of 1 + 0.1 cos(2πt ÷ 365) (see Figure 7), where simu-
lation time t is day of year (0 < t < 365); the value of 
Ω = 0.1 is proposed by Roche and colleagues,9 but 
sinusoidal modulation isn’t used for Nigeria as the 
temperature is very uniform throughout the year 
(with less than a 2 °C change).

Model calibration. Calibration is an empirical pro-
cess through which selected parameters in the mod-
el are fine-tuned such that the model characterizes  

Figure 8. Comparison of infective population and antigenic diversity 

in the reference model7 versus multispecies models from 250 

simulations: (a) infective population and (b) antigenic diversity. The 

red line in the chart shows the percentage difference between the 

average number of infective individuals.

0  200  400  600  800  1,000 1,200 1,400

In
fe

ct
ed

 p
op

ul
at

io
n

Logical simulation time (days)

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

–1

–0.5

0

0.5

1
 

The plots for the reference 
and multispecies model 
are similar and overlap 
each other

% ∆ mean

Multispecies

Reference

(a)

0 200 400 600 800 1,000 1,200 1,400

In
fe

ct
ed

 p
op

ul
at

io
n

Logical simulation time (days)

 0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0
 3.5
 4.0

5.0
 4.5

–1

–0.5

0

0.5

1

% ∆ mean

Multispecies

Reference

(b)



www.computer.org/cise			   	�  19

observed data with sufficient accuracy. Calibrat-
ing the two parameters, namely, contact rate β 
and mutation rate ψ, for a given country is ac-
complished by comparing the in silico phylogram 
generated via simulation to the corresponding in 
vivo phylogram (see Figure 6). The range of values 
for the two parameters has been explored using 
the following initial estimates: 2.847 contacts/day 
for β and different ranges of mutation rates listed 
earlier.18

The in silico phylograms don’t have taxa (iden-
tifiers such as A/duck/Egypt) similar to the in 
vivo phylogram. Consequently, comparison of the 
two phylograms is accomplished by using the fol-
lowing standard phylogram topology (or shape) 
metrics20 in decreasing order of importance: num-
ber of clades (primary determinant of antigenic 
diversity), interclade distance (estimates evolution-
ary distance between clades), average number of 
child nodes (leaf nodes have zero children, which 
reflects speciation), and average depth (number 
of intermediate nodes to the root, which reflects 
establishment/extinction rates of strains). Note 
that both in vivo and in silico clades contain se-
quences that have a less than 1.5 percent differ-
ence between each other. Consequently, intraclade 
distances aren’t a useful distinguishing factor and 
aren’t included in the set of metrics. The ETE tool-
kit21 has been used to develop Python scripts to 
analyze the phylograms and generate comparative 
metrics. Because the parameter space is reasonably 
constrained, calibration has been performed by 
exhaustively searching the solution space in small 
increments (to avoid potential pitfalls with heuris-
tic searches).

The simulations for calibration and analysis 
were conducted for a period of 18 years, with the 
first 15 serving as “burn-in” time. The burn-in 
period accounts for the difference between the 
putative root of the WHO/OIE/FAO reference 
tree (A/turkey/England/5092/1991) versus 
the actual viral isolates in the nomenclature phyl-
ogram that start from 2006 for the three coun-
tries. The in silico viral sampling commences 
only after the burn-in period and continues until 
end of simulation. The simulations for Turkey, 
Vietnam, and Nigeria were conducted for three, 
four, and three years, respectively, correspond-
ing to the range of years used in the WHO/OIE/
FAO reference phylogram. Each simulation re-
quires 4 Gbytes of RAM and approximately 522 
± 42 seconds of runtime on an Intel Xeon X5550 
CPU at 2.67 GHz.

Results and Discussions
The phylogeographic and phylodynamic analysis 
methods we just discussed were utilized to analyze 
the evolution of H5N1 in three high-risk countries, 
namely, Turkey, Vietnam, and Nigeria. The charts 
in Figure 11 show success rates, that is, the fraction 
of stochastic simulations that yield the same number 

Figure 9. Statistical comparison of key epidemiological and 

antigenic characteristics of the reference model (green) and 

the multispecies model (orange): (a) peak infection and (b) 

antigenic diversity.
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Figure 10. Comparison between reference and multispecies models with 

0.1 sinusoidal modulation (Ω = 0.1) on contact rate (β).
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of clades (the primary metric) between in silico and 
in vivo phylograms. The values plotted are from 50 
stochastic runs for each pair of parameter settings, 
for a total of 7,500 simulation replications per coun-
try. Table 2 tabulates the other metrics correspond-
ing to parameter values for contact rate β and mu-
tation rate ψ that yield the same number of clades. 
The entries in the table have been ordered with the 
best configuration for each country being listed first.

The data in Figure 11a shows that different 
pairs of values for β and ψ can explain the diver-
sity of viruses in Turkey and Nigeria after 15 years 
of burn-in time. However, the secondary metric 

in Table 2, namely, interclade distance, provides 
a strong arbitration to identify the best ecologi-
cal settings for these two countries. Note that, for 
Vietnam, there is a much higher viral diversity, so 
only one set of parameter settings repeatably yields 
the observed viral diversity.

Analysis of Overfitting
To estimate issues with overfitting, we looked at the 
impact of changing calibrated parameter settings 
by ±10 percent on the mean number of clades. 
Statistical analysis using F-test (for variance) and T-
test (for means) used results from 20 independent 
simulations for each parameter settings. In all cases, 
the variance was statistically similar, with F-tests 
yielding p-valueα = 0.05 ≫ 0.05. The results from the  
T-tests also showed that in almost all cases, a ± 10 
percent change in parameters didn’t result in a sta-
tistically significant (p-valueα = 0.05 > 0.05) change in 
the mean number of clades from the simulation. The 
overall statistically significant consistency in mean 
and variance suggests that the model and param-
eter settings haven’t been overfitted to the observed 
number of clades for Turkey, Nigeria, and Vietnam.

Assessment of Critical Parameters
We used the GSA method22 to rank and identify 
critical parameters in the model. The GSA method 
utilizes success/failure rates from simulations con-
ducted using a range of values for a given param-
eter to yield a dm,n statistic. This statistic is sensitive 
to differences in both central tendency and any dif-
ference in the distribution functions. The magni-
tude of the dm,n statistic indicates that parameter’s 
importance in a model (larger values indicate that 
the parameter has a higher influence).

Table 3 shows the dm,n statistic measured by 
varying the parameter by ± 50 percent (in steps of 
10 percent) around its calibrated settings and from 
20 simulation runs for each setting. The param-
eters in Table 3 are ordered from most influential 
to least. Overall, contact rate β is the most critical 
parameter that influences genetic diversity as it plays 
a critical role in the spread of epidemics. However, 
the range for β is small (from 2.0 to 3.0 in Table 2,  
a 50 percent change), consistent with the expectation 
that behaviors and interactions of wild waterfowl 
species don’t significantly vary between the coun-
tries. The next influential parameter is mutation rate 
ψ, which introduces antigenic variations enabling 
viral lineages to become endemic in the population. 
Collectively, as indicated by Table 3, lower contact 
and mutation rates reduce the evolutionary rate and 

Figure 11. Comparison of success rates (fraction of in 
silico phylograms that yield same number of clades as 
in vivo phylograms) for different parameter settings for 
β and ψ: (a) Turkey, (b) Vietnam, and (c) Nigeria. The 
highest success rates are highlighted in green.
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genetic diversity of viruses, resulting in fewer distinct 
clades in the phylogram.

The diversity in bird species, which influ-
ences brooding season, birth (µb), and death (µd), 
ranks third, indicating it’s a key parameter. In 
other words, diversity of bird species and differ-
ences in their life cycle is an important ecological 
characteristics to be modeled. Seasonal modula-
tion plays some role in explaining the antigenic 
diversity and can’t be completely ignored. In con-
trast, the net number of individuals in the model 
(N ) and the number of initially infected birds 
(Io) don’t have significant influence on the results 
from simulations.

Phylogram Comparisons
Figure 12 shows an in silico phylogenetic tree for 
the three countries using the best parameter set-
tings tabulated in Table 2. Comparing to the in 
vivo phylograms in Figure 6, the in silico phylo-
grams also exhibit similar and consistent structure 
with the same number of clades. As summarized 
by the column titled “No. child nodes” in Table 2,  
the degree of nodes in the in vivo and in silico 
phylograms were almost identical, establishing that 
the evolutionary characteristics are consistently 
modeled.

The depth of nodes is a measure of long-term 
lineage establishment and overall genetic diver-
sity among the strains in each country. Figure 13 
shows a comparison of the fraction of nodes at dif-
ferent depths, with nodes closer to the root having 
a lower depth. The column titled “Node depth” 
in Table 2 summarizes the average node depths. 
The data in Figure 13 shows that the evolutionary 
shape of the in vivo and in silico phylograms are 
similar. Combined with the intercluster distances, 
consistency in node depths establishes that the two 

phylograms show similar evolutionary characteris-
tics. Collectively, the phylodynamic analysis high-
lights that the in vivo and in silico phylograms are 
quantitatively, structurally, and visually accurate, 
thereby establishing validity of the calibrated pa-
rameter settings.

Inferences
The parameter settings used to generate the in sili-
co phylogram now provide additional information 
about the evolution of H5N1 in the three countries, 
information that can’t be directly obtained from in 
vivo data. The charts in Figure 11 along with data 
from Tables 2 and 3 show that even modest chang-
es in raw contact rates can have noticeable impacts 
on H5N1 evolution and immune escape. Reduc-
tion of contact rates is typically accomplished by 
culling infected birds, particularly livestock. The 
inferences from the proposed method support the 
current practice of large-scale culling, similar to 

Table 2. Metrics used for comparing in vivo and in silico phylograms for contract rate (β) and mutation 
rate (ψ) values that yield the same number of clades.

Country β ψ Interclade distances No. child nodes (%) Node depth (%)

Turkey 2.1 0.0093 20 1.92 10

2.0 0.0091 21 0.31 16

2.0 0.0096 23 0.30 16

Vietnam 3.0 0.083 32 0.18 7

Nigeria 2.5 0.013 10 0.18 21

2.2 0.014 16 0.23 22

Table 3. Ranking of parameters from generalized 
sensitivity analysis (GSA).22

Parameter

Score (dm,n statistic)

Turkey Nigeria Vietnam

Contact rate (β) 0.526 0.447 0.216

Mutation rate (ψ) 0.446 0.385 0.354

Bird species 0.191 0.138 0.343

Seasonal  
modulation (Ω)

0.174 N/A 0.123

Population (N) 0.156 0.133 0.094

Initial infection (Io) 0.109 0.091 0.0878
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the containment efforts pursued during the 2015 
H5N1 outbreak in the American Midwest. Fur-
thermore, the data also supports CDC/FAO efforts 

to encourage isolation of water and feed of domes-
tic birds, which further reduces contact rates.

Influencing the mutation rate (ψ) of viruses, 
particularly in livestock, is indirectly accom-
plished through vaccination. Vaccinated birds are 
immune to viruses in several clades, thereby pre-
venting epidemics and consequently improving 
further diversification in those lineages. The charts 
in Figure 11 along with data in Table 3 suggest 
that extensive vaccination can decrease viral diver-
sification rates in the different countries. However, 
unlike contact rates, a more extensive vaccination 
effort is necessary to influence viral diversifica-
tion rates. The data also suggests that economic 
constrains, particularly in poorer countries, drive 
culling as primary containment strategy over vac-
cination. The mutation rates for H5N1 in Vietnam 
(0.083) is significantly higher when compared to 
Turkey (0.0093) and Nigeria (0.013). The data 
suggests that vi-ral strains are experiencing a more 
rapid evolution and have the potential to give rise 
to novel strains through reassortments in Viet-
nam. Consequently, Vietnam requires greater em-
phasis on surveillance and containment efforts to 
mitigate emerging epidemics.

The implications of studying AIVs extends to 
human and swine influenza viruses because 

studies have established that all currently known 
influenza A viruses originated in aquatic birds. 
Although this study focused on three high-risk 
countries, the methods and analysis can be read-
ily extended to all 12 distinct global geographi-
cal regions included in the WHO vaccine design 
and recommendation process.2 The analysis can be 
used to guide time frames for redesigning vaccines 
for different geographic regions, thereby extend-
ing applicability of vaccines without compromis-
ing their efficacy. Similarly, the results can also be 
used to inform prophylaxis of poultry and livestock 
to prevent and contain emergent outbreaks from 
novel viral strains such as H5N3. Furthermore, the 
models can be used to guide and focus sampling 
and surveillance efforts of migratory waterfowl in 
areas with high antigenic drift. Moreover, the as-
sumptions in the model, particularly the influence 
of migration and impact of environmental uptake, 
can be relaxed to provide a more comprehensive 
model. The proposed methodology can guide 
surveillance efforts to assess risk of novel strains 
emerging through reassortments at the human-
animal interface. 

Figure 12. Sample in silico phylogenetic trees generated using the 

best parameter settings shown in Table 2 identified via calibration. 

The clades in the tree are shown in different colors.
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