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ABSTRACT

Agent-based approaches enable simulation driven analysis and discovery of system-level properties using
descriptive models of known behaviors of the entities constituting the system. Accordingly, a spatially-
explicit agent-based ecological modeling, parallel simulation, and analysis environment called SEARUMS
has been developed. However, the conservatively synchronized parallel simulation infrastructure of
SEARUMS did not scale effectively. Furthermore, the initial multithreaded shared-memory design
prevented utilization of resources on multiple compute nodes of a distributed memory cluster.

Consequently, the simulation infrastructure of SEARUMS was redesigned to operate as a Time Warp
synchronized parallel and distributed discrete event simulation (PDES) on modern distributed-memory
supercomputing platforms. The new PDES environment is called SEARUMS++. The spatially-explicit
nature of the models posed several challenges in achieving scalable and efficient PDES, necessitating
new approaches in SEARUMS++ for: ® modeling spatial interactions and initial partitioning of agents,
@ logical migration of an agent during simulation using proxy agents to reflect migratory characteristics,
and ® ghosting of agents using multiple proxy agents to handle boundary cases that occur during logical
migration of agents.

This article presents our optimization efforts involving new methods to address aforementioned
challenges. The design of SEARUMS++ and experimental evaluation of various alternatives that were
explored to achieve scalable and efficient PDES are also discussed. Our experiments indicate that
SEARUMS++ provides 200% performance improvement and maintains scalability to a larger number of
processors, thus enabling efficient parallel simulation of spatially-explicit agent-based epidemiological
models.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

which the HPAI is endemic, are the primary vectors causing inter-
continental spread of the disease [20,28]. The virus rapidly spreads

Humanity faces a multitude of global socioeconomic challenges
due to recurring epidemics and punctuated pandemics of Highly
Pathogenic Avian Influenza (HPAI) viruses, specifically of H5N1 and
H7N9 serotypes [28,37,16,40]. Infected migrating waterfowl, in
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from waterfowl to poultry, swine, and humans through contami-
nated water, feed, and surfaces as summarized in Fig. 1. The 2009
H1IN1 pandemic was caused due to a novel viral strain involving
a triple reassortment of avian, swine, and human serotypes [37].
Several recent investigations have established that with just 1 mu-
tation the H5N1 virus gains the ability to be readily transmitted
between humans and thereby significantly worsening the impacts
of epidemics [ 16,42]. Consequently, there is heightened urgency to
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Fig. 1. Overview of global ecology of avian influenza.

shift the focus of investigations from studying possibilities to ana-
lyzing probabilities of outbreaks and to proactively mitigate or even
preempt emergent pandemics [37]—a contrast to the delayed, re-
active responses to the 2009 pandemic [37] and its adverse con-
sequences as discussed in the report by the executive office of the
president of the United States [27].

Importance of modeling & simulation: Proactive approaches
for mitigation of emergent epidemics rely on computational
methods that integrate computer science and classical epidemi-
ology [11,40,41]. Computational epidemiology enables compre-
hensive understanding of disease ecology and facilitates proactive
design and administration of prophylactic strategies. It is funda-
mentally based on Modeling and Simulation (M&S) with added
integration of statistics, bioinformatics, and geography for vari-
ous analysis. Recently, a variety of computational approaches have
been proposed to analyze ecological, epidemiological, and socioe-
conomic risks of HPAI [28,37,11,40].

Our computational epidemiology approach: In contrast to
other investigations, our approach aims to enable comprehensive,
global analysis by explicitly modeling migratory patterns of wa-
terfowl, the primary transcontinental vectors for avian influenza
(see Fig. 1). Since, the degree and extent of the influence of mi-
gratory patterns on disease ecology is poorly understood [32,12,
44], we propose the use of detailed temporo-geospatial models of

SEARUMS: Simulation

migratory patterns generated from surveillance data [33] to elicit
global disease characteristics [32]. Fig. 2 illustrates such a model
viewed in SEARUMS, the M&S environment used and enhanced in
this study (see Section 4 for details). Agents, represented as cir-
cles in Fig. 2, interact with each other when they overlap. Over-
lap between agents is detected using a separate “spatial” agent
that tracks their geospatial locations. Section 4 summarizes re-
sults from our earlier publications [35,33,32] by discussing our
model [33], its validation [32], and its successful application to an-
alyze epidemiological, ecological, and socioeconomic impacts of
HPAI [35,32].

1.1. Motivation for parallel & distributed simulation

The advantages of agent-based models (ABMs), including our
spatially-explicit ABMs of migratory waterfowl, are realized at
the cost of significantly higher simulation execution time because
ABMs are computationally demanding. Consequently, the Java-
based simulation kernel of SEARUMSwas initially designed to
operate using multiple threads on shared-memory multi-core
and symmetric multiprocessing (SMP) systems using conservative
synchronization method [34,17]. The multithreaded simulation
kernel used a centralized event queue with minimal locking for
scheduling and processing timestamped events in correct causal
order. Multiple threads process concurrent events scheduled at
a given simulation time. A more detailed description of the
simulation kernel is available in the literature [34].

The multithreaded Java-based simulation back-end of SEARUMS
performed well for many of our test models. The chart in Fig. 3 plots
the expected versus observed runtime for a Synthetic Test Model
STM, with 360 agents created by replicating 30 agents 12 times. The
replicated agents have identical behaviors and schedule events at
exactly the same virtual time, thereby ensuring at least 12 concur-
rent events are scheduled at each time step in the simulation. The
motivation for 12 replications stems from the CPU architecture of
the compute node used to conduct experiments. The experiments
were conducted in headless mode (to avoid all GUI overheads)
on a dedicated compute node with two hex-core (total 12 cores)
Intel® Xeon™ X5650 CPUs @ 2.67 GHz. The experiments were con-
ducted using the -XX:+UseNUMA and -XX:+UseParallelGC
JVM flags designed to mitigate the performance impacts on the
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Fig. 2. Screenshot of an Agent-based Model (ABM) viewed in SEARUMS, the M&S environment used in this study (see Section 4 for details).
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Fig. 3. Scalability testing of Java-based, multithreaded simulation kernel using a
Synthetic Test Model (STM) with 360 agents.

NUMA architecture of the Xeon™ X5650 CPU. The chart in Fig. 3
shows that the simulator scales well, with some degradation in
speedup around 10 cores. The degradation in speedup at and above
10 cores is expected because some of the CPU time is occupied by
the JVM'’s garbage collection threads and by OS processes.

However, for real-world models, the simulation kernel did not
scale as expected. Fig. 4 presents a comparison between theoretical
and observed simulation execution times. The experiments were
conducted using two models, namely M1 (with 2628 agents) and
M2 (with 6455 agents). As shown in Fig. 4(a), given a single
core runtime of 12600.17 s for M1, the observed speedup with 6
cores was just 12600.17 = 3900.23 = 3.23, when compared to
speedup of 5.25 for the synthetic model (see Fig. 3). Furthermore, as
illustrated by the theoretical versus observed curves in Fig. 4(a), the
scalability for M1 tappers off at six cores. Model M2 (see Fig. 4(b))
had similar scalability characteristics, with improvements tapering
off at about 8 cores (speedup of ~3.9), even though M2 was a larger
model with higher concurrency.

Shortcomings of initial conservative approach: Detailed
analysis of the virtual timestamped discrete events in model M2
was conducted to assess availability and utilization of concurrency
in the model. Fig. 5 shows a plot of available concurrency in
the model versus the used concurrency. The concurrency data in
Fig. 5 was measured through instrumentation of the simulator in
the following manner. For an agent a, let Ivt(a) (at initialization

Ivt(a) = 0) be the virtual time when agent a executed its
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chronologically previous event. For an event e, let and ..., (e) be
the virtual time when agent a must process event e. Moreover, in
our model the virtual time of events (i.e., t;eq,) is used such that just
trecy is sufficient to yield a total ordering of events for each agent
without requiring any additional information (such as process IDs)
to break ties. In a causally correct conservative simulation when
an agent a receives an event, te(€) > [vt(a). Moreover, event
e is processed by agent a only when the global clock advances to
trecv(e). However, in the general case, if agent a does not receive
any other event between [vt(a) and t,.., (e), then it can process e at
Ivt (a) without violating causality, rather than waiting for the global
clock to advance to t..(e). Accordingly, in the general case, the
earliest simulation time agent a can process an event e is Ivt(a),
where Ivt(a) is the virtual time it processed its chronologically
preceding set of events. This relationship has been used to track
concurrency in a single threaded simulation.

Specifically, just before an event e is processed by an agent at
virtual time ¢, (e), a counter corresponding to Ivt(a) in a global
table is incremented to track the number of events that could
have processed at time Ivt(e) (note Ivt(e) < trcv(e)) without
violating causality. This value is a measure of maximum available
concurrency in the model at each time step and is shown by the
light green region in Fig. 5. The dark green solid curve is fitted to the
maximum available concurrency observations to illustrate general
trend. In addition, the actual number of events that were processed
by agents at time t...,(e) is tracked in another global table. This
value is a measure of concurrency actually used by the conservative
simulator and is shown by the cyan region in Fig. 5 with the solid
blue curve being fitted to the data to show trends.

Fig. 5 indicates that there is significant potential parallelism
available in the model. In conjunction with the graphs in Fig. 4,
it is inferred that the multithreaded Java kernel is unable to
effectively extract and exploit the latent parallelism available in
the model. Further investigations revealed that the root cause for
this bottleneck was the stochastic nature of real-world models
which have variances in timings. In other words, unlike the
synthetic model STM (see Fig. 3) that scheduled 12 events at
time t, the actual models schedule events at time t &= At, where
At is stochastic variance necessary to characterize probabilistic
behavior of birds in nature. The variance reduces the number of
events scheduled at exactly the same virtual time t. In such a
scenario, several threads remain idle waiting for previous events
to be processed to avoid causal violations. Unfortunately, such
scenarios occur frequently in the model, thus negatively impacting
the overall scalability and performance of the simulator. Moreover,
the supercomputing cluster available for our research had a
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Fig. 4. Performance of Java-based, multithreaded simulation kernel for models M1 and M2.
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distributed memory architecture and the shared-memory design
could not effectively utilize the computational infrastructure
beyond a single node, as summarized in the following subsection.

1.2. Overview of proposed research and this article

Endeavoring to address the shortcomings of our conserva-
tively synchronized shared-memory simulation kernel, we have
redesigned the simulation infrastructure of SEARUMSto operate as
an optimistically synchronized parallel and distributed simulation.
Optimistic synchronization, specifically Time Warp [17] was cho-
sen as it has shown to maximize parallelism and scale effectively
for spatially-explicit models and epidemiological simulations
[24,7]. As detailed in Section 5, the simulation infrastructure was
redesigned in C4++ using a general purpose, Time Warp synchro-
nized simulation framework called WESE [30]. The chart in Fig. 6
summarizes the runtime for model M2 using our revised simula-
tion infrastructure. As illustrated by the chart in Fig. 6, the revised
approach provides improved scalability when compared to the ini-
tial conservative version shown in Fig. 4(b). Section 8 provides
additional details on performance analysis of the revised infras-
tructure along with discussion on model-related factors that influ-
ence overall scalability in the revised system.

The earlier shared-memory approach used a unified spa-
tial agent (called UnifiedEcoArea) for detecting overlap bet-
ween agents and initiating various interactions [34]. The
UnifiedEcoArea approach had to be redesigned into multi-
ple independent spatial agents (called SplitEcoAreas) to op-
erate efficiently on distributed memory platforms as discussed
in Section 5. However, as discussed in Section 5, the redesigned
SplitEcoArea approach did not readily scale as the number of
mobile agents, representing migrating waterfowl flocks, was in-
creased.

The root cause of the issue was that the mobile agents do not
physically move (the C++ class instantiated for an agent is fixed on
a compute node), but only move logically by changing latitude and
longitude values in their state. Nevertheless, since all interactions
are event driven, the logical movement of agents causes large
number of Inter-Process Messages (IPMs) that flow over the
interconnects resulting in increased synchronization overheads
and degraded performance. In order to address this bottleneck,
as detailed in Section 5.4, a Single Active Proxy (SAP) approach
is proposed. In SAP, as agents logically migrate, proxy agents on a
different compute nodes are suitable activated and deactivated to
embody migratory patterns and to minimize [PMs.
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Fig. 6. Performance of the revised Time Warp synchronized simulation infrastruc-
ture for model M2. Additional experimental data along discussion on model-related
factors that influence overall scalability of the revised infrastructure are discussed
in Section 8.

However, as detailed in Section 5.5, the SAP approach still
experienced performance issues at boundary cases when an
agent’s neighborhood spans two or more partitions. Consequently,
a Multiple Active Proxy (MAP) approach is proposed to address
three different boundary cases that arose in SAP approach. The
MAP approach extends the SAP approach by permitting multiple
proxies to be active at the boundary cases when an agent spans
two or more partitions to minimize IPMs. Section 6 presents the
MAP approach followed by Section 7 that contrasts the proposed
methods with related research. Section 8 discusses results from
various experiments conducted to assess the proposed methods.
Section 9 concludes the paper by summarizing the outcomes and
inferences drawn from this investigation.

2. Background on epidemiological models

Modeling and Simulation (M&S) plays a pivotal role in epi-
demiological analysis, phylodynamics, bionomics, and design of
prophylactic measures to contain epidemics [38,29,45]. Epidemi-
ological models are classified into Equation-based models (EBMs)
(also called compartmental models) and Individual-based Models
(IBMs) [38,29,45]. EBM are classical approaches that use Ordinary
Differential Equations (ODEs) to model transition of population
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between disease states or compartments such as: Susceptible (S)
— Exposed (E) — Infected (I) — Recovered (R) [6].

In contrast to EBMs, IBMs are descriptive rather than pre-
scriptive models. Unlike EBMs that model the population as ho-
mogeneous aggregate compartments, IBMs model individuals in
the population to explore heterogeneity, phylodynamics, anti-
genic drift, and other important epidemiological phenomena. Con-
sequently, IBMs are most effective in epidemiological analysis
of emergent diseases whose characteristics are not well under-
stood [35,29,38]. Moreover, IBMs enable more vivid and intuitive
temporo-geospatial visualization for various analyses.

The disadvantages of IBMs in the context of this research are:
@ unlike human populations, the coarse resolution of surveillance
data for waterfowl and limited data availability on behaviors
of various species prevent generation of an IBM with realistic
contact networks for waterfowl species [39]; @ the large number of
parameters in IBMs poses challenges for validation; and ® IBMs are
computationally demanding [2,5,31,48] and can require 1000s of
cores to simulate models with billions of individuals in short time
frames [32,24,17,48].

3. Background on time warp

Time Warp is a popular optimistic synchronization protocol
used for Parallel Discrete Event Simulation (PDES) [17]. A Time
Warp synchronized PDES is organized as a set of asynchronous log-
ical processes (LPs) or agents that represent the different physical
processes being modeled. The LPs interact with each other by ex-
changing virtual time stamped events. Each LP processes its events
by incrementing its local virtual time (LVT), changing its state, and
generating new events. Although each LP processes local events
in their correct timestamp order, events are not globally ordered.
Causality violations are detected when an event with timestamp
lower than the current LVT (a straggler event) is received. On re-
ceiving a straggler event a rollback mechanism is invoked to re-
cover from the causality error. The rollback process recovers the
LP’s state prior to the causal violation, canceling the erroneous out-
put events, and re-processing the events in their correct causal or-
der. Each LP maintains a queue of state transitions along with lists
of input and output events corresponding to each state to enable
rollback recovery. A periodic garbage collection approach based on
Global Virtual Time (GVT) is used to prune the queues by discard-
ing history items that are no longer needed. The distributed sim-
ulation is deemed to have terminated when all the events in the
system have been processed in their correct causal order.

4. SEARUMS: our prior research

Analyzing the epidemiological and socioeconomic impact of
migratory waterfowl on global spread of avian influenza using
computational approaches requires temporo-geospatial modeling
and simulation of billions of waterfowl [35,32]. Equation-based
models (EBMs) are computationally efficient but do not yield
vital geospatial characteristics necessitating the use of Individual-
based models (IBMs). However, as discussed in Section 2, the
modeling issues and computational demands of IBMs prevent
their use for analysis of billions of individuals, even with modern
supercomputers [2,5,31,24]. Consequently, we utilize a novel,
hybrid approach involving a combination of IBMs and EBMs for
temporo-geospatial modeling [35,36,33,32].

4.1. Hybrid modeling approach

In our hybrid modeling approach, colocated birds of the
same species are modeled as one aggregate entity called a flock

[35,36,33,32]. Each flock represents only a single species be-
cause individuals modeled by it share the same epidemiological
and ecological characteristics. Epidemiological properties of each
flock were characterized using EBM approach while inter-flock
epidemiological characteristics were modeled using the IBM ap-
proach. Aggregation of colocated individuals dramatically reduces
the number of entities in the model thereby reducing computa-
tional demands without compromising necessary epidemiological
and temporo-geospatial characteristics. Further discussion on our
hybrid modeling approach is available in our prior publications
[35,36,33,32].

4.2. Automatic model generation

The ecological models of migratory waterfowl are generated
from aggregate satellite telemetry data on various waterfowl
species and migratory corridors available as Geographic Informa-
tion Systems (GIS) datasets. Fig. 7(a) shows an example of the GIS
data for Anas acuta (Northern Pintail) from the Global Register of
Migratory Species (GROMS) database [14]. Fig. 7(c) illustrates an
example of spatially-explicit flocks (shown as circles) generated
for agent-based simulation. Generic migratory corridors shown in
Fig. 7(b) are suitably adapted to model migratory flyways for each
waterfowl metapopulation as shown in Fig. 7(c). Migratory charac-
teristics of various species obtained from Birdlife database [4] are
used to determine temporal attributes for the flyways. The gen-
erated models are stored in an XML format for simulation-based
epidemiological analysis. Details on methods used for model gen-
eration are discussed in our earlier publication [33].

4.3. SEARUMS: Simulation & analysis environment

SEARUMSis a modeling, simulation, and analysis environment
currently optimized to enable study and analysis of global
epidemiology of avian influenza. It has been implemented in Java
and enables graphical visualization of the model and simulation
results as illustrated by Fig. 2. SEARUMSprovides an Agent-
based Modeling (ABM) and a multithreaded Discrete Event
Simulation (DES) infrastructure [35]. A Waterfowl agent models
the ecological and epidemiological behaviors and characteristics of
a flock (shown in Fig. 7(c)) using a discrete time Markov process
shown in Fig. 8. Various epidemiological state transitions and
inter-agent interactions are accomplished via virtual timestamped
events as discussed in [35,32].

Spatially-explicit interactions between Flock agents are
modeled using an EcoArea agent that represents the Earth’s
surface. The EcoArea agent receives updates from Flock
agents upon changes to selected attributes such as: current
coordinate, infection percentages, and population. The EcoArea
components track agents and use the information to detect and
trigger interactions between overlapping agents by scheduling
virtual timestamped events as detailed in [35]. SEARUMSincludes
capabilities for logging, charting, and tools to collate simulation
results and conduct various epidemiological analyses.

4.4. Validation, analyses, & case studies

The modeling and simulation approach utilized in SEARUMShas
been extensively validated using several case studies. The tempo-
ral characteristics of high risk outbreaks reported by the simula-
tion were compared with outbreak timelines reported by World
Health Organization (WHO). The temporo-geospatial data from
our simulations closely correlated to major outbreaks reported by
WHO as summarized in Fig. 9(a) and discussed in our publications
[35,33,36]. The high risk outbreak regions reported by the simula-
tion were consistent with those identified via surveillance [10]. As



D.M. Rao /]. Parallel Distrib. Comput. 93-94 (2016) 102-119 107

(a) Raw GROMS data. (b) Migratory corridors.

(c) Generated model.

Fig.7. Surveillance GIS data sample, migratory corridors, and generated model with flocks of colocated individuals shown as circles. Detailed procedure for model generation
is discussed in [33] and online at http://searums.org/esm13.

The SEIR ODE:s used by the agent.
Please refer to our earlier publications MIGRATION TRANSITIONS
Jor further details[14, 10).
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Fig. 8. SEIR Markov process for Waterfowl agent.
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Location |Real-World | Simulated |(Days)
Indonesia | 23-Jan—06 | 1-Jan06 22

Irag/Iran | 1-Mar-06 | 25-Mar-06 | 24
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Additional outbreak analysis data points are
presented and discussed in our publications.

(a) Outbreak timeline (full list in [35]). (b) Geospatial correlations [33].

(c) Phylogeographic annotation [31].

Fig. 9. Results from validation conducted using various case studies reported in our publications [35,36,33,32].

shown in Fig. 9(b), the high risk outbreak regions (in dark shades ral isolates (as defined by WHO) from various regions [32]. The
of red) showed strong correlation with actual human outbreaks as validation discussed in [32] uses the fact that similar H5N1 iso-
discussed in[33,32]. The infection pathways reported by the model lates (with <1.5% difference) from waterfowl from two different
were validated using a phylogeographic method using similar vi- countries indicate a direct infection pathway [32,47]. Readers are
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referred to our earlier publications for epidemiological, antigenic,
and prophylactic analysis along with sensitivity analysis and vali-
dation results [35,36,33,32].

5. SEARUMS++: The new parallel & distributed simulation
environment

An architectural overview of the redesigned system called
SEARUMS++ is shown in Fig. 10. It has been developed to
enable optimistically synchronized PDES on distributed memory
platform, in contrast to the earlier shared memory, conservatively
synchronized infrastructure. SEARUMS++ has been developed
by interfacing the Java-based GUI of SEARUMS with a Time
Warp synchronized simulation infrastructure developed in C++,
using a framework called WESE [30]. WESEwas chosen because
its web-interface could be readily reused to interface with the
existing Java modeling and visualization frontend. Furthermore
the proposed investigations use traditional state saving method
to recover from rollbacks due to the following two reasons. First,
the state saving approach permitted the C++ implementation
to closely mirror the initial implementation in Java, thereby
facilitating effective verification and validation. Second, using
reverse computation approach requires development of additional
reverse processing logic (for rollback recovery) which introduces
additional development effort. Given the complexities of our
epidemic model, our research currently uses a state saving
approach, with exploration of the alternative reverse computation
based strategy as a future endeavor.

WESEprovides the infrastructure for developing a Time Warp
synchronized parallel simulation and a C++ Application Pro-
gram Interface (API) for developing agents. The actual agents
that perform the core simulation-time activities are part of WE-
SEfactories that are deployed on various compute nodes (via
MPI) used for parallel simulation. A WESEFactory acts as an
agent repository and as a Time Warp synchronized simulation
kernel that uses MPI for exchanging events between factories.
Fig. 10 illustrates the modules constituting a WESEFactory. The
communication subsystem handles the tasks of interacting
with remote SEARUMS++ clients and other WESEfactories via a
custom application-layer protocol over TCP/IP connections. The
gateway modules use the communication subsystem to pro-
vide the initial entry point to a WESEFactory. It creates a new
sessionmanager for each unique session initiated with the fac-
tory. The sessionmanager performs the task of interacting with
the agent factory to create the actual agents and locally es-
tablishes part of the Time Warp synchronized parallel simulation.
The simulationmanager then initiates a distributed simulation
by interacting with sessionmanagers on the WESEFactories
used in a simulation.

Agents in a single WESEFactory are part of the same
process and are scheduled using a single thread of execution.
Scheduling of events is performed using a shared Least-Time-
Stamp-First (LTSF) event queue. Therefore, events exchanged
between agents on the same WESEFactory never cause rollbacks.
Conversely, inter-Factory events that are exchanged over the
interconnect fabric (via MPI calls) give raise to straggler events
resulting in rollbacks. WESEalso handles Global Virtual Time (GVT)
based garbage collection and generation of optimistic I/O. Each
sessionmanager also performs the task of redirecting standard
output from local simulations back to a SEARUMS++ client for
visualization. A more detailed description of WESEand the process
of developing a WESEFactory are available in the literature [30].

The graphical user interface and the WESE-based parallel sim-
ulation back-end have been coupled together using a Java-based
interface layer. The simulation manager is the core module
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Fig. 10. Architectural overview of SEARUMS++.

that establishes, controls, and coordinates all the simulation re-
lated activities. It first interacts with the partitioner to suit-
ably partition the model for parallel simulation. Then it uses the
factory proxy modules to interact with various factories used
for parallel simulation. Protocol details involved in communicat-
ing with a WESEFactory are handled by individual factory
proxy modules. The factory manager coordinates the various
factory proxy modules and eases interactions between them
and the simulation manager. The simulation manager also
performs the task of routing application-level messages to suitable
visualization modules that update corresponding skeleton agents.
The skeleton agents provide a dynamic (i.e., during simulation), in-
tuitive, graphical representation of the actual agents on various
factories.

5.1. Agents in SEARUMS—H+

The Waterfowl agent models the ecological and epidemio-
logical behaviors of a flock using characteristics generated from
surveillance datasets as discussed in Section 4.2. The conceptual
lifecycle model for a Waterfowl agent is shown in Fig. 8. As dis-
cussed in Section 4.1, each Waterfowl agent models a flock of
colocated birds of the same species. This agent provides differ-
ent configurations to model intra-flock and inter-flock infection
spread [34]. Inter-flock infections occur when the agent migrates
and comes in contact with any other agent in the model. The
Waterfowl agent behaves as a classical Time Warp Logical Pro-
cess (LP) introduced in Section 3. The temporal behaviors and life
cycle processes of agents are coordinated by scheduling suitable
timestamped events.

The spatial interactions between agents are modeled using
EcoArea components that represent Earth’s surface. EcoArea
components receive update events from an agent initially and
whenever it changes its attributes, such as: current coordinate,
infection percentages, and population changes. The EcoArea
components track agents in its purview by maintaining a list in
its state. It uses the information to detect and trigger interactions
between overlapping agents by scheduling timestamped events.

5.2. Spatial agents in SEARUMSH+

SEARUMS++ provides two different EcoArea components
that can be used in the two different configurations enumerated
below. The two configurations were developed in an iterative



D.M. Rao /]. Parallel Distrib. Comput. 93-94 (2016) 102-119 109

One Unified EcoArea per Factory

L1, -©

(a) Unified EcoArea.

9 % 55 %’%

oy v

(b) Split EcoArea .

Legend: @ — An Agent W — Update event 57 — Proximity Event < — Infection Event

(To EcoArea)

(From EcoArea) *

Fig. 11. Different simulation configurations involving Unified and Split EcoArea components. The figure shows some of the key events exchanged between agents

and the EcoArea to model various life cycle activities as discussed in Section 5.2.

manner to address scalability and performance issues observed in
each iteration. However, note that immaterial of the configuration
used, the final application-level events are identical in all cases
and consequently the simulation-results do not change. The
two different EcoArea configurations explored in the design of
SEARUMS+H+ were:

Configuration #1: Unified EcoArea: This component repre-
sents the complete surface of the earth as shown in Fig. 11(a).
One unique component is instantiated on each compute node
used for parallel simulation by the simulationmanager. Agents
partitioned to that node only send update events to their local
Unified EcoArea to report changes in their location as agents
migrate. Conversely, each Unified EcoArea component pro-
cesses the update events and broadcasts aggregated updates to
other EcoAreas to ensure coherence of agent information. These
broadcasts may cause additional local proximity events to be
generated by receiving EcoAreas to update local agents on its
node. Agents receive proximity notifications only from their lo-
cal EcoArea. Agents utilize the information in proximity events
to directly schedule infection events to overlapping agents. The
objective of this design was to minimize inter-Factory commu-
nication that ultimately plays a crucial role in causing rollbacks.
However, as discussed in Section 8, this configuration did not yield
good scalability. Therefore, we propose the alternative approach
discussed below to circumvent the bottlenecks observed in this
configuration.

Configuration #2: Split EcoArea: This component represents
a specific rectangular region of the Earth’s surface. Areas repre-
sented by Split EcoArea components are distinct and do not
overlap. One unique Split EcoArea component is created per
WESE Factory. Furthermore, the partitioner (see Fig. 10)
distributes agents based on their geographical coordinates to the
corresponding Factory. When Split EcoArea is used in a sim-
ulation, agents communicate only with the EcoAreas they over-
lap. Fig. 11(b) illustrates this configuration involving four factories.
Note that as agents move they appropriately register and unregis-
ter themselves from the corresponding Split EcoArea.

5.3. Motivation for proxy agents

The Time Warp synchronized PDES infrastructure of
SEARUMS++ provided performance improvement over the ini-
tial conservatively synchronized, Java-based multithreaded kernel.
However, the PDES did not efficiently scale as the number of mobile
agents in the model was increased. The root cause of the issue was
identified to be large number of Inter-Process Messages (IPMs) that
increased synchronization overheads and degraded performance.
IPMs arise because agents are initially partitioned to different

compute nodes (on the compute cluster used for PDES) and they
do not physically move (the C++ object for an agent is fixed on a
compute node), but only move logically by changing their latitude
and longitude values stored in their state. However, as illustrated in
Fig. 12(a) and (b), when agents logically move they have to interact
with agents on a different compute node giving rise to IPMs. Con-
sequently, as simulation time advances from tg to t; (ty < t; < tp),
the communication patterns change increasing IPMs.

IPMs negatively impact synchronization resulting in degraded
scalability and performance as illustrated by the charts in Fig. 13.
The graphs in Fig. 13 also illustrate the strong correlation (Pearson
correlation coefficient r = 0.98, p-value <0.0001) between IPMs
(Fig. 13(a)) and rollbacks (in Fig. 13(b)) as well as a strong correla-
tion (r = 0.96, p-value <0.0001) between inter-process messages
and simulation execution time (Fig. 13(c)).

5.4. Single Active Proxy (SAP) method

In continuation with the discussions in Section 5.3, the vol-
ume of Inter-Process Messages (IPMs) arising due to movements of
agents had to be reduced to improve scalability and performance.
Reducing IPMs requires that interacting agents must be predom-
inantly on the same compute node—implying that as agents logi-
cally migrate they must be correspondingly relocated to a different
compute node. Accordingly, the notion of proxy agents was intro-
duced in the simulation. Proxy agents are agents that are automat-
ically created for each mobile agent on each compute node used
for PDES as shown in Fig. 12(c). As an agent logically moves across
EcoArea boundaries, it deactivates itself after activating an ap-
propriate proxy on a different compute node. Therefore, only one
proxy-agent is active at any given time and consequently this strat-
egy is called Single Active Proxy (SAP) approach.

A simplified pseudo code for the SAP approach is shown in
Algorithm 1. Initially, one deactivated proxy agent is automatically
created on each PDES-process for every mobile agent in a given
model. Deactivated agents do not perform any operations and
remain dormant in the simulation. However, based on the initial
geographical location of an agent, the appropriate proxy activates
itself and performs the normal operations of the agent. When
the agent migrates across its local EcoArea, the active proxy
first deactivates itself (sets a flag in its state) logically removing
itself from the simulation. The proxy then schedules an activation
event (which includes the current state) to the appropriate proxy
object on a different EcoArea. For example when agent #1 in
Fig. 12(c) moves from EcoArea #0 to EcoArea #1 proxy agent Py o
deactivates itself while activating proxy agent P; 1. The activated
proxy then resumes life cycle activities for the agent. Subsequent
state changes are not communicated back to the deactivated proxy.
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Algorithm 1: Single Active Proxy (SAP) Approach

begin initialization(state)

if inLocalEcoArea( state—latitude, state—longitude) then
state—~>isActive = true;

registerWithEcoAreal();

scheduleLifeCycleEvents();

else
‘ state—~>isActive = false;
end if
end initialization
begin processEvent(state, event)
if state—>isActive then
proessEvent(event);
if ! inLocalEcoArea( state—latitude, state—longitude) then
state—~>activeProxy = unregisterFromEcoArea();
activateProxy(state, state—>activeProxy);
state—isActive = false;
end if

else
if isProzyEvent( event) then
activate();

‘ state—>isActive = true;
else

‘ rescheduleEvent(state>activeProxy, event—>recvTime + DELTA);
end if
end if
end processEvent

The dormant proxies have an extra role of forwarding events (as
events may have already been scheduled for the dormant proxy) to
the active proxy. Activation, deactivation, and forwarding of events
are performed using sub-simulation cycles denoted by DELTA in
Algorithm 1. Specifically, simulation time is defined as a double
precision value and fractional time (DELTA = 0.0001) is added
to meet the causal constraint that all events sent by an agent must
have a time stamp greater than the agent’s LVT. In other words, in
order to forward an event e with timestamp t,..,(e), a deactivated
proxy creates and schedules copy of the event with timestamp
trecv(€) + DELTA to the active proxy. The tools for post-simulation
analysis of simulation logs ignore the fractional DELTA values in
log messages. Consequently, the filtered simulation logs used for
various analysis are identical in all cases.

5.5. Boundary cases in SAP

The Single Active Proxy (SAP) approach provided significant
improvement in scalability and performance over the base case
as discussed in Section 8. However, the simulations continued to
experience some performance degradation as the number of com-
pute nodes used for simulation was increased. Experimental anal-
ysis indicated that the SAP approach still experienced increased
inter-process messages and rollbacks when an agent spans two
or more partitions, as enumerated in the following three different
Boundary Cases (BCs):

BC #1: The first case occurs when agents transitioning from one
EcoAreato another across PDES-process boundaries as illustrated
for agent #1 in Fig. 14. In this transitional period only one proxy is
active in SAP and has to interact with agents in two different PDES-
processes (namely agents #3 and #4) resulting in increased Inter-
Process Messages (IPMs) and degraded performance.

BC #2: The second case occurs when a mobile agent is resting
but happens to spans across two EcoAreas as illustrated by
the set of agents {#6, #7, #8} in Fig. 14. Since agents span two
or more EcoAreas, it gives rise to copious amounts of Inter-
Process Messages (IPMs) which results in degraded performance.
The frequency of this scenario steadily increases as the number
of EcoAreas or partitions increases. Increase in partitions results
in thin or small EcoAreas thereby increasing the probability that
an agent spans two EcoAreas. This issue conspicuously manifests
itself even without SAP (as expected) as highlighted by the chart in
Fig. 13(a).
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Fig. 14. Illustration of three Boundary Cases (BCs) that impact SAP approach.

BC #3: The third BC occurs when an agent’s movement
oscillates between two or more partitions, similar to the pathway
of agent #9 shown in Fig. 14. In this scenario, proxy agents often
experience cascading rollbacks which degrades performance.

6. Multiple Active Proxy (MAP)

The Multiple Active Proxy (MAP) approach is proposed to
extend SAP approach and address the three boundary cases (BCs)
discussed in Section 5.5 to provide a more comprehensive solution.
The MAP approach extends the SAP approach by permitting
multiple proxies to be active at the boundary cases. The pseudo
code in Algorithm 2 provides additional details about the MAP
implementation. In MAP approach, each active proxy handles
interactions with other agents on its local partition, thereby
minimizing Inter-Process Messages (IPMs) that are exchanged in
SAP mode. Moreover, each proxy agent also performs various life
cycle tasks by scheduling events to itself. Replication of life cycle
tasks at each active proxies does increase the net number of events
in the simulation. However, these events are local events that do
not significantly degrade performance.

Algorithm 2: Multiple Active Proxy (MAP) Approach

begin initialization(state)
ecoAreas=ccoAreas(state>latitude, state>longitude);
if localEcoArea € ecoAreas then

state—>isActive = true;

registerWithEcoArea();
scheduleLifeCycleEvents();

else
| state—isActive = false;
end if
end initialization
begin processEvent(state, cvent)
if state—~>isActive then
prevEcoAreas=ecoAreas(state—latitude, state—>longitude);
proessEvent(event);
if ! inLocalEcoArea( state~>latitude, state>longitude) then
state—~activeProxy = unregisterFromEcoArea();
state—>isActive = false;
else
newEcoAreas=ccoAreas(state—latitude, state—~>longitude) -
prevEcoAreas;
if newEcoAreas != ¢ then
‘ activeProxies(newEcoAreas);
end if
end if
// Synchronize active proxy states
activeProxyStateCoherence();
else
if isProzyEvent( event) then
activate();
state—isactive = true;
else
‘ rescheduleEvent(state—>activeProxy, event—recvTime + pELTA);
end if
end if
end processEvent
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At the end of handling local interactions, the active proxies
exchange messages (which are IPMs) to consistently update the
states of all active proxies using a straightforward protocol. Each
proxy maintains a summary of interactions which includes list
of neighbors infected and amount of infection received from
neighbors. The summary information is sent via timestamped
events to other active proxies, if any. Upon receiving summary
information from another active proxy, each proxy appropriately
updates its local state. At the end of the phase of event exchanges
all proxies have the same, consistent state. The straightforward
protocol involves O(ng) events, where n, is number of active
proxies per agent. However, n, is typically a small value (in the
range 2-5) and therefore is not a significant overhead.

Once an agent no longer spans multiple partitions, relevant
proxies deactivate themselves and the simulation continues to
proceed in SAP mode. MAP minimizes the number of Inter-Process
Messages (IPMs) at boundary cases thereby improving upon the
efficiency gained by utilizing SAP. In this context, it must be noted
that the final resulting state in both MAP and SAP approaches is the
same as that of the original agent’s state. Consequently, the results
from the simulations used for various analyses are identical in all
cases.

7. Related research

The proposed research is a novel integration of several major
topics in Modeling and Simulation (M&S), including: agent-based
epidemic modeling, spatially-explicit models, and optimistic PDES.
Several investigations have been reported on these topics and this
section compares the proposed research with some of the closely
related investigations. Readers are referred to the references and
literature for a more comprehensive survey of related works
[35,33].

Agent-based models (ABMs) have been employed for epide-
miological analyses for various diseases [8,22]. Parker and
Epstein [22] discuss the issues involved in design and development
of a Java-based, Global-Scale Agent Model (GSAM) distributed
platform for epidemiological modeling using over 6 billion
interacting agents. Similar to GSAM, the proposed research avoids
“physical” process migration but unlike GSAM the proposed
research involves “logical” process migration using proxy agents.
However, in contrast to agents in GSAM, the mobile agents in our
model explicitly embody migration and inter-agent interactions
without relying on contact matrices or contact networks [22].
Moreover, the agents in our research are different in that they do
not represent a single entity but a collection of collocated entities,
striking a better balance between model resolution and execution
costs. Our modeling approach is useful for M&S of 21 billion
migrating waterfowl using surveillance and satellite telemetry
data.

The use of ABMs with explicit agent mobility distinguishes the
proposed research from those reported by Barrett et al. [2], Bisset
etal. [5], and Perumalla et al. [24]. These three investigations use a
reaction—diffusion approach involving contact graphs for epidemic
modeling. The use of contact graphs or social networks for epi-
demic modeling has been discussed by other researchers as well
[9,19,15]. Recently, Yeom et al. [48] discuss the use of their sim-
ulator called EpiSimdemics to simulate epidemic progression
using contact networks for 280.4 million individuals on 352 K core-
modules on a Cray XE6/XK7. Their implementation uses two-level
hierarchy to aggregate several individuals into PersonManagers
and several areas where they interact into LocationManagers
to balance various overheads. The contact networks-based model
proposed by Yeom et al. have locations and schedules that permit
static analysis and static partitioning to obtain effective load bal-
ance across the 352 K core-modules. The proposed research uses

a very different model than Yeom et al. [48]—although the migra-
tory flyways for waterfowl are specified in our models, the con-
tacts between agents are not preordained but discovered during
simulation based on probabilistic movements of agents. Yeom et al.
use synthetic contact networks to model and simulate interactions
between agents. Consequently, the partitioning and parallelization
approaches for our model need to be different than the static ap-
proaches proposed by Yeom et al. However, similar to the afore-
mentioned investigations we aim to utilize parallel simulations to
accelerate performance of epidemic simulations.

The proposed Single Active Proxy (SAP) and Multiple Active
Proxies (MAP) approach discussed in Sections 5.4 and 6 can be
viewed as “logical” process migration in contrast to the “physical”
process migration that has been extensively investigated in
conservative as well as optimistic PDES [17,23]. There are a few
aspects that distinguish traditional process migration from our
approach. First, all necessary proxies are created on different PDES-
processes at the beginning of simulation. Consequently, there are
more agents in the simulation than there are in the model—i.e., if
a model has m mobile, i immobile agents and the simulation is
run on p processors (p > 1), then the total number of agents
in the simulation is m 4+ i + m(p — 1), where m(p — 1) are
proxy agents. In contrast, in traditional process migration there
would be only m + i agents in the simulation. Second, the proxy
agents remained fixed on the PDES-processes in which they were
created and they logically activate or deactivate themselves (via a
flag in their state) to mimic migration. Consequently, as far as the
underlying simulation kernel is concerned, there is absolutely no
changes occurring to the simulation, which is a stark contrast to
physical migration in which new agents are typically created and
the unused ones are destroyed.

Unlike SAP that essentially accomplishes “logical” process mi-
gration, strategies involving physical migration of logical processes
have been proposed for dynamic load balancing [25]. However,
unlike the application-specific, logical migration accomplished by
SAP, almost all of the efforts reported in the literature focus on
providing a generic infrastructure for physical process migration.
Consequently, the earlier investigations involve extensions to the
underlying simulation kernel or using a new runtime infrastruc-
ture. On the other hand, the proposed investigations focus on
model-level extensions that can be applied to both conservative
and optimistic PDES. Furthermore, SAP and MAP are agnostic to
the underlying simulation kernel.

Charm++ is a widely used language and runtime library for
distributed computing that performs migration of “chares”, that
are synonymous to an agent in our research, with the primary
objective of accomplishing dynamic load balancing [1,3]. Several
simulators such as ROSS [26] and EpiSimdemics [48] have
been developed using Charm++. Charm+-+ performs physical
migration of chares while SAP does not physically migrate
proxy agents. SAP logically activates and deactivates proxies on
different nodes (when agents migrate) with the objective to reduce
inter-process communication and consequently synchronization
overheads, rather than accomplishing load balancing as with
Charm++. Furthermore, MAP permits multiple proxies (akin to
having multiple copies of one “chare”) to be active while in
Charm++ only a single copy of a “chare” is active. Load balancing
methods have also been used in the context of shared memory
multithreaded parallel simulators. Khaligh et al. discuss the use of a
dynamic load balancing to improve performance of multithreaded
simulations of adaptive transaction level models (TLMs) [18]. The
multithreading approach is similar to the method used in the initial
version of our simulator. However, the revised version, namely
SEARUMS++, does not use multithreading and is designed for
distributed memory systems.

The SAP and MAP approaches are distantly related to “ghosting”
in multi-resolution simulations in which multiple representations
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of entities are maintained [43]. The term ghosting is used to refer
to scenarios similar to MAP in which multiple distinct entities
perform operations that are conceptually associated with just
one entity. However, MAP approach is different than the concept
of “ghosting” in multi-resolution simulations in that the agents
are not at different resolutions and in fact strive to be identical
copies of each other. Furthermore, unlike “ghosts” that typically
participate throughout a simulation, in MAP approach proxies
dynamically activate and deactivate themselves. Similar to MAP
approach, migration of portions of shared states for adaptive load
management of multi-agent systems has also been explored [21].
Similarly, distribution and maintenance of consistent states
and sub-states is an integral aspect of the Data Distribution
Management (DDM) service in the High Level Architecture
(HLA)[46]. In contrast, the MAP approach does not subdivide states
of agents but aims to replicate complete, consistent state resulting
in multiple, identical proxy agents in the simulation. Furthermore,
interactions between agents use an on-demand request-response
approach rather than the publish-subscribe approach used in
HLA. Maintaining, identical coherent states for proxy agents
also distinguishes MAP approach from the passive agent sharing
approach used in RepastHPC [7]. In RepastHPC copies of agents are
passive in that changes to the copies are not transmitted to the
actual agent [7]. Conversely, in MAP changes to a proxy are used
to reach an eventually consistent state for the subset of currently
active proxies (and not all proxies) associated with a given agent.

Optimistic PDES on distributed memory platforms using
reverse computation approaches to recover from rollbacks have
been reported [24,26]. Unlike the reverse computation based
approaches, the proposed investigations use traditional state
saving method to recover from rollbacks for the following
two reasons. First, the state saving approach permitted the
C++ implementation to closely mirror the initial implementation
in Java, thereby facilitating effective verification and validation.
Second, using reverse computation approach (such as the one
used in ROSS [26]) requires development of suitable reverse
processing logic (for being used during rollback recovery) which
requires additional analysis and effort. Given the complexities of
our epidemic model, our research currently uses a state saving
approach, with exploration of the alternative reverse computation
based strategy as a future endeavor.

8. Experiments

The experiments conducted to evaluate the effectiveness of
the proposed methods to enable efficient parallel simulation were
performed using a range of different models. Table 1 shows the
number of mobile and immobile agents constituting four models
generated using the methods introduced in Section 4.2. The models
M1, M2, and M3 have a varying number of agents at different scales
of detail used for sensitivity analysis. Unlike the first three models
in Table 1, model M4, the primary model used for various analyses
presented in Section 4.4, serves as a stress-test case in which all
agents are mobile.

All the experiments were conducted on a distributed memory
supercomputing cluster running Red Hat Enterprise Linux (RHEL
6.5). Each compute node had two hex-core Intel® Xeon™ X5650
CPUs @ 2.67 GHz (with 12 MB L2 cache) yielding 5333 bogomips
on each of the 12 cores. Each compute node had 48 GB of RAM
averaging to 4 GB per core. The nodes were interconnected using
QDR infiniband interconnect. Note that the experiments were
performed using the non-GUI mode supported by SEARUMS to
avoid GUI overheads. Furthermore, the Java frontend was executed
on a separate compute node and model-logs were turned off
to eliminate any resource contentions or I/O overheads for all
performance tests reported in this section. The experiments did

Table 1

Summary of models used in experiments.
Model ID Number of agents Total

Mobile Stationary

M1 44 2628 2672
M2 44 6411 6455
M3 44 10032 10076
M4 3088 0 3088

not use any Time Warp optimizations, such as lazy cancellation,
to eliminate their influence on experimental results and to clearly
distinguishing benefits of the SAP and MAP approaches that
focus on reducing Inter-Process Messages (IPMs) generated by
the model. Furthermore, SAP and MAP approaches operate at the
model level permitting them to be used with other optimistic
or conservatively synchronized kernels. Minimizing Time Warp
related optimizations permits the experimental results to provide
an estimate of their applicability to other PDES infrastructures.

8.1. Unified versus split EcoArea comparisons

The initial redesign utilized Unified EcoArea agents (intro-
duced in Section 5.2) reflecting the characteristics of the original
shared-memory implementation discussed in Section 4.3. How-
ever, as illustrated by the charts in Fig. 15, the Unified EcoArea
configuration did not efficiently scale and perform. Experiments
involving larger number of cores were abandoned since run times
started to steadily increase. The root cause of the bottleneck was
the significant increase in broadcast messages between EcoAreas
in this configuration as evident from the corresponding curve in
Fig. 15(b). As the number of nodes used for parallel simulation
is increased, the number of events exchanged between Unified
EcoAreas grows, increasing the number of Inter-Process Mes-
sages (IPMs). Increase in IPMs increases probability of strag-
gler messages (see Section 5.3 for correlation between IPMs and
rollbacks) thereby increasing number of rollbacks (i.e., synchro-
nization overheads) as seen in Fig. 15(b) and thus degrading the
performance.

On the other hand, the Split EcoArea method do not involve
broadcasting of events to update pertinent state information.
Instead, as described in Section 5.2, the agents directly schedule
events to appropriate Split EcoAreas depending on their
current geographic location. This feature significantly restricts
the necessary cross EcoArea interactions thereby improving
performance as evidenced by the charts in Fig. 15. The Split
EcoArea experiments used a vertical partitioning scheme in
which the surface of the earth was divided into vertical strips as
shown in Fig. 11. This strategy provided us the best load balance
due to nature of the migratory patterns that are predominantly
vertical, i.e, in North <>South direction. Prior to the vertical
partitioning, we pursued dividing the surface into a 2-dimensional
grid. However, the grid partitioning scheme resulted in diminished
scalability and performance and consequently was abandoned.
Furthermore, as discussed in Section 5.3 and illustrated by
the slightly concave curve in Fig. 15(a), the Split EcoArea
configuration without proxies (i.e., did not use SAP or MAP
approaches) did not scale well as the computational resources
were increased.

8.2. Experimental evaluation of SAP & MAP

The experiments involving Single Active Proxy (SAP) and
Multiple Active Proxy (MAP) were conducted to assess weak
and strong scalability of the two approaches. The weak scaling
experiments were conducted a synthetic model with 10 mobile
agents migrating horizontally from the western to eastern
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Fig. 16. Simulation runtimes for SAP and MAP approaches to analyze weak scaling
characteristics.

hemisphere. The Split EcoArea configuration with vertical
partitioning scheme was used to trigger the use of proxies as the
agents migrate. In addition, 200 immobile agents were created
on each PDES-process. All the flocks were seeded with an initial
infection to trigger various epidemiological activities to maintain
about the same workload on each PDES-process. Fig. 16 illustrates
the simulation runtime for the SAP and MAP approaches using
a varying number of cores. The error bar at each of the data
points indicates the 95% confidence interval computed from the
10 runs. The lightly shaded region tracks the confidence interval to
highlight statistical significance of the observations. The average
simulation times for the SAP and MAP approaches range from
39-45 s and 22-29 s respectively. Variations in timings arise due
to mobile agents migrating across the vertical partitions in the
different configurations. The simulation time slightly increases
with increase in number of cores due to additional overheads
of GVT-based garbage collection. The charts in Fig. 16 illustrate
that the SAP and MAP configurations yield typical weak scaling
characteristics.

The strong scaling experiments for evaluating the proposed Sin-
gle Active Proxy (SAP) and Multiple Active Proxy (MAP) approaches
were conducted using the Split EcoArea configuration. The ob-
servations collated from experiments conducted using a range of
configurations for different models (see Table 1) are shown by the
charts in Figs. 17 and 18. The x-axis of all the charts corresponds to
the number of parallel PDES-processes (i.e., MPI processes), with
each process running on an independent core. The solid lines on
each one of the charts track average values obtained from 10 runs.
The corresponding dotted lines show the curve fitted for the ob-
servations to emphasize deviations from general trends due to the
occurrence of Boundary Cases (BCs) as discussed in Section 5.5. The
error bar at each of the data points indicates the 95% confidence
interval computed from the 10 runs and the lightly shaded region

tracks the confidence interval to highlight statistical significance of
the observations.

In all the charts in Figs. 17 and 18, the base case configuration
corresponds to simulations with Split EcoArea conducted
without the use of proxies. However, the base case curves are not
included in the charts for model M4 (the “stress test” case) because
the configuration without proxies was practically unusable due to
long simulation execution times (over 24 h with over 32 cores)
and the experiments were abandoned. The charts for model M1 in
Fig. 17 already highlight the effectiveness of the Single Active Proxy
(SAP) and Multiple Active Proxies (MAP) approaches. However,
for the small M1 model both the SAP and MAP approaches are
pretty close in runtime for most configurations, with the MAP
approach performing about 10% to 15% better. The small difference
is expected because the MAP approach operates as SAP except for
boundary cases.

The graphs for model M2 in Fig. 17 and model M3 in Fig. 18
illustrate the advantages of SAP and MAP approach. Furthermore,
the advantages of MAP are a bit more prominent in these two
models. The SAP approach consistently outperforms the base case
by about 2 x while the MAP approach provides another 15% to 25%
performance boost on top of SAP. In these two models the overall
effect of MAP is still muted because the models do not have many
mobile agents in them. Nevertheless, the MAP approach provides
much better scalability that SAP for both M2 and M3 models. On
the other hand, the SAP approach starts experiencing degradation
in scalability around 20 cores and 40 cores for models M2 and M3
respectively. The degradation in scalability occurs sooner for M2
than for M3 because M2 is a smaller model with less workload
and with increased availability of compute power the model
optimistically advances only to suffer from increased rollbacks, as
evidenced by the charts in Fig. 17.

The advantages of MAP approach are more pronounced in the
case of model M4 that has a large number of mobile agents. The
abundance of mobile agents increases the chances of Boundary
Cases (BCs) as the number of PDES-processes is increased. Unlike
the SAP method, the MAP approach continues to provide much
better scalability and about 20% to 25% performance improvement
in the configurations with up to 48 cores. Reprising the discussion
from earlier paragraph, the base case data for model M4 are not
shown in Fig. 18 as the experiments were abandoned due to
extremely long simulation times that exceeded 24 h in several
configurations.

The experimental results shown in Figs. 17 and 18 also illustrate
the strong correlation between increase in Inter-Process Messages
(IPMs), the number of rollbacks, and simulation execution time.
Note that the count of IPMs includes anti-messages used by the
Time Warp protocol for optimistic synchronization. For example,
with model M4 in SAP mode, on an average each rollback
resulted in 18.21 anti-messages out of which 7.46% were non-local,
i.e., dispatched to other PDES-processes. On the other hand, with
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Fig. 17. Comparison of Inter-Process Messages (IPM), rollbacks, and simulation execution time for the models M1 and M2 shown in Table 1 in the following three
configurations: no proxies (base case), Single Active Proxy (SAP) approach, and Multiple Active Proxies (MAP) approach. The corresponding dotted lines show the curve
fitted for the observations to emphasize deviations from general trends due to the occurrence of Boundary Cases (BCs) as discussed in Section 5.5. Note that number of
PDES-processes is the same as the number of CPU-cores used for simulation (one PDES-process per CPU-core).

model M4 in MAP mode, on an average each rollback resulted in
30.88 anti-messages of which 2.11% were non-local. In conjunction
with chart on number of rollbacks from Fig. 18, the data shows
that the MAP approach experiences fewer but deeper rollbacks
with very few non-local anti-messages when compared to the
SAP approach. The number of rollbacks is fewer because the MAP
approach is effective in eliminating a large fraction of IPMs by
using more than one active proxy. Furthermore, the MAP approach
improves upon SAP by further reducing IPMs and consequently the
fraction of non-local anti-messages is lower.

8.2.1. Analysis of plateauing of strong scalability

The experimental results in Figs. 17 and 18 show that
improvements in runtime are observed only up to about 48 cores
and then slowly increase after about 50 cores even for the larger
models M3 and M4. The reasons for this behavior are:

1. Consistent with Amdhal’s Law [13], with a fixed size model, as
the number of cores is increased the speedup does not increase
beyond a certain threshold due to the upper bound on inherent
parallelism available in the model.

2. As the number of cores is increased from 2 to 64, the number of

agents per node for model M4 (that shows improvements up to
48 cores) reduces on an average from 1544 (i.e., 3088--2) agents
per PDES-process to just ~48 (i.e., 3088 - 64) agents per PDES-
process. This causes the PDES-processes to over optimistically
progress into the future only to get rolled-back as straggler
events arrive over the network. Consequently, the net speedup
realized is limited as the computation performed per node
decreases while communication overheads start to dominate.

. More importantly, the geography of the model combined with

vertical partitioning strongly influences and limits the effec-
tiveness of increasing number of partitions. As summarized in
Fig. 19, due to the curvature of Earth the area between longi-
tudes rapidly decreases as latitude increases. During summer
several species migrate north to latitudes ~75°N (i.e., north-
ern Russia, Alaska, Canada, etc.), where the distance between
latitudes is just ~17 miles. With 12 partitions the width of
a vertical partition is 510 miles (360 +~ 12 x 17 miles) and
about 255 miles (360 < 24 x 17 miles) with 24 partitions. With
flock sizes spanning 50-100 miles based on available GROMS
data (see Section 4.3 for model generation details), most flocks
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Fig. 18. Comparison of Inter-Process Messages (IPM), rollbacks, and simulation execution time for the models M3 and M4 shown in Table 1 in the following three
configurations: no proxies (base case), Single Active Proxy (SAP) approach, and Multiple Active Proxies (MAP) approach. The corresponding dotted lines show the curve
fitted for the observations to emphasize deviations from general trends due to the occurrence of Boundary Cases (BCs) as discussed in Section 5.5. Note that number of
PDES-processes is the same as the number of CPU-cores used for simulation (one PDES-process per CPU-core).

fit within the partitions allocated for each PDES-process and
consequently fewer Inter-Process Messages (IPMs) are needed
to model various interactions. However, with 60 partitions, the
width of a vertical partition decreases to approximately 100
miles (360 — 60 x 17 miles). Consequently, the proportion
of flocks spanning two partitions dramatically increases re-
quires a much larger number of IPMs. In other words, as the
number of partitions is increased the Earth’s surface area par-
titioned to them decreases (see Fig. 19(b)) and more flocks
span across partitions, resulting in BC #2 scenario, requiring
increased Inter-Process Messages (IPMs) to model various in-
teractions. The increase in IPMs is evident, particularly in the
SAP approach, where the IPMs sharply increase after about 50
cores (see Fig. 18). Increase in IPMs exacerbates synchroniza-
tion overheads (see Section 5.3 for correlation between IPMs
and synchronization overheads) and degrades speedup and lim-
its scalability. Unlike the SAP approach, the MAP approach min-
imizes number IPMs used in boundary cases. However, MAP
does not completely eliminate IPMs arising from BC #2 because
multiple proxies still have to exchange events to synchronize
their state (see Section 6). Therefore, with increase in parti-
tions beyond a threshold, the number of IPMs grows and neg-
atively impacts speedup. Consequently, as illustrated by charts

in Figs. 17 and 18, the inherent geospatial nature of the model
hinders strong scalability once the number of cores is increased
beyond a certain threshold.

8.2.2. Analysis of memory overheads of proxies

The charts in Fig. 20 illustrate a comparison of the peak memory
usage by Single Active Proxy (SAP) and Multiple Active Proxies
(MAP) approaches. The solid lines in the chart show the peak
memory footprint as reported by the job monitoring system on
the supercomputing cluster. The peak memory is the sum of peak
memory used by all the PDES-processes. The dotted lines in the
charts show the average peak memory footprint on a per-node
basis. The per-node memory footprint was computed by dividing
total peak memory by the number of PDES-processes used for
simulation. The data in Fig. 20(a) shows that the memory usage
for model M3 is comparable between the three approaches. The
base case that does not use proxies has a slightly higher footprint
because increased synchronization overheads (see increased
rollbacks in Fig. 17) cause additional events and states to be
maintained in order to recover from causal violations. The memory
footprint for the models with proxies is not pronounced because
the number of mobile agents in M3 is much fewer when compared
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Fig. 20. Comparison of peak memory footprint between no proxy (base case), Single Active Proxy (SAP), and Multiple Active Proxies (MAP) approaches. The dotted lines
show peak memory usage on a per-node basis, computed by dividing total peak memory by the number of PDES-processes.

to immobile agents. Recollect that proxies are used only for mobile
agents and therefore with few mobile agents, the number of
proxies is also few. Moreover, the advantages of proxying outweigh
their memory footprint—i.e, about 1.2 kB per state copy and
memory for inter-proxy events in the MAP approach.

In contrast, for model M4 where all of the agents are mobile,
the additional memory usage of the MAP approach is evident,
particularly as the number of PDES-processes is increased. With
60 PDES-processes, the memory foot print for SAP and MAP
approach is 31.5 (~0.525 GB/node) and 58.6 (~0.98 GB/node)
respectively, yielding about 1.86x difference. The difference in
memory footprint corresponds to the peak number of additional
proxies that are active in the MAP approach. Note that the actual
number of proxies that are active per agent varies (depending
on number of PDES-processes used as discussed in Section 8.2.1)
throughout the simulation. Nevertheless, as illustrated by the
runtime charts in Fig. 18, the MAP approach provides 15%-57%
improvement over SAP, trading-off memory to reduce runtime.

9. Conclusions

The application of simulation-based analysis using spatially
explicit, agent-based models is gaining momentum for epidemi-
ological analysis of emergent diseases such as avian influenza
[38,29,45]. We have developed a modeling, parallel simulation, and
analysis environment called SEARUMS++ to meet the computa-
tional demands of agent-based models. This paper described in the
issuesinvolved in the design and development of a Time Warp syn-
chronized Parallel Discrete Event Simulation (PDES) infrastructure
of SEARUMS++. The different design alternatives that were incre-
mentally developed and empirically evaluated to identify the op-
timal simulation configuration were discussed.

The spatially-explicit nature of the models posed several
challenges in achieving scalable and efficient PDES, necessitating
new approaches for modeling spatial interactions using Split
EcoArea agents as discussed in Section 5.2. The Split EcoArea

approach experienced scalability issues as the number of mobile
agents in the model was increased. Consequently, the investigation
also focused on identifying and addressing the scalability and
ensuing performance degradation. Exploratory investigations
(presented in Section 5.3) identified that the large volume
of Inter-Process Messages (IPMs) exchanged over the network
was magnifying synchronization issues resulting in degraded
scalability.

The investigations proposed and assessed the effectiveness
of using proxy agents on each process for each agent. Initially,
only one proxy was permitted to be active at any given time
resulting in a Single Active Proxy (SAP) approach. The SAP approach
provided over 200% performance improvement as indicated by
the experimental results discussed in Section 8. However, the SAP
approach did not address bottlenecks arising due to three different
Boundary Cases (BCs) as discussed in Section 5.5. Consequently, a
Multiple Active Proxy (MAP) approach was proposed and assessed.

The Multiple Active Proxy (MAP) approach extends SAP ap-
proach and permits multiple proxy agents to be active only in
boundary case scenarios while operating in SAP mode otherwise.
The MAP mode permits multiple active proxies to handle local in-
teractions occurring on the same process with fewer Inter-Process
Messages (IPMS) to maintain consistent states. Experimental eval-
uation of the MAP approach discussed in Section 8 indicates that
the MAP approach provides more reliable scalability along with a
performance boost of 15% to 57% on top of SAP. The SAP and MAP
approaches are implemented at the model-level using the default
infrastructure provided by the PDES kernel. Since the proposed so-
lutions do not depend on any special support from the underlying
PDES Kkernel, they can be readily implemented in any infrastruc-
ture, including conservatively synchronized PDES.

The experiments indicate that optimistic synchronization
methodology effectively utilizes the latent parallelism in the
model to yield improved scalability and performance. The
optimal simulation configuration consistently yielded about 200%
improvement and was scalable for a wide range of model sizes
highlighting its effectiveness. The optimized PDES significantly
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reduces simulation execution times, easing exploratory analyses,
and highlights the current and future importance of parallel
simulations in epidemiology, bionomics, and related fields.
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