
Investigation of Geometric Landscape and Structure−Property
Relations for Colloidal Superstructures Using Genetic Algorithm
Nishan Parvez,† Dhananjai M. Rao,‡ and Mehdi B. Zanjani*,†

†Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, Ohio 45056, United States
‡Department of Computer Science and Software Engineering, Miami University, Oxford, Ohio 45056, United States

ABSTRACT: Over the past two decades, colloidal particles with a variety of
shapes, sizes, and compositions have been synthesized and characterized
successfully. One of the most important applications for colloidal building
blocks is to engineer functional structures as mechanical, electrical, and optical
metamaterials. However, complex interaction dynamics between the building
blocks as well as sophisticated structure−property relationships make it
challenging to design structures with predictable target properties. In this
paper, we implement an inverse material design framework using Genetic
Algorithm (GA)-based techniques to streamline the design of colloidal
structures based on target properties. We investigate spherical particles as well
as colloidal molecules of different sizes and shapes and evaluate a Geometric
Landscape Accessibility parameter that identifies the size of feasible domains
within the geometric phase space of each structure. Considering target
photonic properties, our GA-assisted framework is further utilized to identify
sets of building blocks and structures that lead to various target values for the size of the photonic band gaps. The proposed
framework in this study will provide new insight for predictive computational material design approaches and help establish
more efficient ways of understanding structure−property relations in sub-micrometer-scale materials.

■ INTRODUCTION

Colloidal structures provide a versatile platform for engineer-
ing metamaterials with desired functionalities and tunable
properties.1−6 Micro- and nanoscale colloidal building blocks
of different sizes and shapes have been utilized to build a wide
variety of colloidal structures.7−41 Predicting structural
symmetries that can arise from different types of building
blocks is an important topic that has attracted significant
interest among material scientists.42−44 On the other hand,
predicting and understanding different properties of colloidal
structures is equally important for designing functional
metamaterials for applications such as optical,28,45−48 ther-
mal,49−51 and electronic devices.52,53 For this purpose,
computational methods2,24,30,31 and machine learning techni-
ques54−56 provide a useful platform to investigate and study
colloidal structures and their properties.
One of the main challenges with the study of sub-

micrometer colloidal systems is to design structures that will
lead to specific desired properties. Traditional material design
methods have mainly focused on studying and measuring the
properties of existing materials and structures, which is a time-
consuming task and is experimentally very expensive. A much
more efficient method is to use an inverse material design
platform that involves target properties driving the material
design process. In this approach, desired material properties
such as specific mechanical or optical characteristics are
provided as input, and the output of the design process is to
identify a set of building blocks that produce a material

structure with the specified target properties. However,
considering the large library of available colloidal particles
and structures, finding an optimized set of particles that will
provide a structure with target properties is nontrivial.
Specifically, two major obstacles come to mind. First, the
building blocks possess a variety of geometric features and
shapes. Even for a known structure symmetry, there are only a
limited number of combinations of building block sizes and
shapes that would result in the formation of the intended
structure. This essentially means there are complex geometric
constraints, unique to each structure, that limit the choice of
the building blocks.2,30−32,57 Second, the connection between
the properties of a colloidal construct and its structural features
is in general very complicated and hard to predict.58,59

Therefore, sophisticated computational or experimental frame-
works are needed to successfully establish an inverse material
design approach.
In this paper, we develop a Genetic Algorithm-assisted

framework to implement a property-driven material design
approach for a wide range of colloidal building block types and
structures. We first study the geometric landscape and analyze
the geometric phase space for structures formed by colloidal
particles of different sizes and shapes. We also demonstrate an
effective way to navigate the complicated geometric landscape
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when complex building blocks, such as multi-component
colloidal molecules, are used. This leads to the identification of
geometrically feasible domains within the geometric phase
space for these structures, which we then quantitatively
characterize by defining and calculating a Geometric Land-
scape Accessibility (GLA) parameter. Next, we explore
structure−property relations for the structures studied in the
previous step through the use of Genetic Algorithm (GA).
Without loss of generality, we focus on the photonic properties
and photonic spectrum of these materials. The GA finds the
optimized values for different features of the building blocks,
such as particle sizes and dielectric constants, for various
structures, in order to achieve the target photonic properties.
The results of this work provide a footprint for inverse material
design approaches as well as a better understanding of the
complex geometric landscapes and the intricate structure−
property relations present in the design process of novel
colloidal structures.

■ RESULTS AND DISCUSSION

Figure 1 shows a schematic of the implementation of our
material design approach. In traditional material design,
material properties are examined for previously established
material structures with well-known building blocks. This
approach limits material design since the existing materials, as
well as newly discovered structures, may not possess desired
properties even after considerable modifications. However,
within the inverse material design approach, as shown in Figure
1a, desired properties are the major target of the design
process, which would decide the choice of the building blocks
and the suitable overall structure. Here we focus on the
development of an integrated Genetic Algorithm-based inverse
material design scheme, which couples predictive analysis of
material properties with the self-assembly behavior of mirco- or
nanoscale colloidal particles. Figure 1b demonstrates various
elements of this approach. Within this framework, optimization
schemes are utilized to determine combinations of building
blocks that self-assemble into structures with target properties.
Figure 1c shows examples of different classes of sub-
micrometer-scale building blocks that can be utilized to design
materials with specific functionalities. These building blocks
include single particles with spherical or nonspherical
shapes,5,60,61 patchy particles,26 and clusters of two or more
particles,23,27 which provide a wide variety of structure
symmetries for discovery of materials with specific properties
through the inverse design approach.
Broadly speaking, the parameters associated with each

structure can be classified into two categories: geometric and
physical. Under the geometric parameter category, the shape
and sizes of the elements of each building blocks are
considered. Physical parameters include properties of the
elementary particles of the building blocks that contribute to
the problem-specific target properties of the overall structures.
In general, the available parameter space will be very high
dimensional, and establishing structure−property relations is a
challenging task. For example, the geometric parameters of a
system with two types of tetrahedral clusters, as shown in
Figure 1c, includes four different particle sizes that can be
changed independently. Only a limited number of combina-
tions of these particle sizes will result in the formation of the
desired structures. Identifying acceptable combinations of
these parameters requires a full sweep of the parameter space,

which is not feasible with simple analytical methods and
demands efficient computer algorithms.
Here we utilize the optimization framework shown in Figure

1b to find the set of geometric parameters and building block
physical properties that will optimize target properties for
different categories of colloidal structures. A wide range of
these colloidal structures are considered excellent candidates as
photonic metamaterials.47,62 Therefore, without loss of
generality, we focus our GA-assisted inverse material design
framework on the photonic properties of the colloidal
structures. Under this paradigm, one starts with identifying
the parameters that are relevant for reaching a desired property
for a set of building blocks that form a specific structure. In the
case of photonic property optimization, we consider the
diameter (σ) and dielectric constant (ϵ) of each particle type.
The first step toward finding an optimized set of parameters is
to generate a trial set with entries from all parameters as input
for the optimization algorithm. The next step in the
optimization paradigm is to accept or reject the trial set
based on its compatibility with the overall symmetry of target
structure on the basis of its geometric properties. For an

Figure 1. (a) Traditional vs inverse material design flowchart. (b)
Schematic of GA-assisted inverse material design framework. (c)
Example target structures for inverse material design framework
originating from colloidal building blocks. Different colors refer to
different types of particles with various sizes and properties.
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accepted set, the structure is generated and evaluated for the
target property. In this study, we demonstrate our GA-assisted
scheme for two main categories of structures: (1) crystals of
spherically symmetric colloidal particles and (2) multi-
component superstructures of colloidal molecules where each
building block is composed of a number of permanently
bonded spherical particles. These classes of structures, in
essence, provide samples of structures with simple as well as
more complex building blocks to demonstrate the full scope of
this inverse material design approach. We present this method
in two steps: The first step involves the analysis of the
geometric parameters to understand the geometric landscape
and the geometric constraints that relate the overall structure
to its building blocks. The second step is to investigate
property−structure relations that guide the optimization of
material properties within an inverse material design approach.
Geometric Phase Space. We begin by investigating the

geometric landscape of various types of superstructures that
can be formed from colloidal particles. A simple case involves
spherically symmetric particles that can form binary crystalline
structures. Before describing the geometric phase space for
these systems, we note that the geometric solution space
includes two degrees of freedom, with each particle type
contributing to one degree of freedom: σi represents particle
diameters where the subscript i refers to specific particle types
(colors). The diameter of the particles must be selected in a
way that when assembled, the target structure is achieved
through establishing appropriate contacts between different
particle types. This gives rise to the geometric phase diagram,
which is calculated by considering the corresponding geo-
metric constraints for each structure. For example, if a specific
value for lattice parameter, a, is targeted for the CsCl structure
shown in Figure 2a, the selection of particle diameters will be

constrained by this lattice parameter and by the fact that a
desired distance between the blue and yellow particles is
needed for establishing proper contacts. This is essentially
achieved when two particles are located within the equilibrium
distance dictated by the interparticle interactions, i.e. the
particle pairs are separated by a finite distance that is reflective
of the effective interaction range when two particles are in
equilibrium. Depending on the type of colloidal particle surface

functionalization, the particles may experience very short-range
interactions, for example, for DNA-coated particles, or longer
range interactions, for example, for particles coated by organic
ligands.57,63,64

The separation parameter =
σ σ+s l2

1 2
, defined based on the

particle center-to-center distance l normalized by the average
diameter of the particle pair (σ1 + σ2)/2, will thus be assumed
to take a set of different values to reflect different possible
interaction ranges. Figure 2a,b shows the results of geometric
analysis for binary structures of spherical particles with cesium
chloride (CsCl) and zincblende (ZnS) symmetries, for
different values of s at 1.025 and 1.05. We assumed an
example target lattice parameter of a = 1000 nm; however, the
same approach can be used for systems with any other
selection for the target lattice parameter. The two particle
diameters for the x and y axis of the geometric phase space, σB
and σY, refer to the blue and yellow particles that need to
establish proper contact for the formation of this structure.
The blue and the red regions on the plots depict the acceptable
domains for σB and σY that satisfy the geometric constraints for
the corresponding structures. We note that the blue domains
are larger and cover the red domains, which implies that larger
values for the separation parameter s, that is, longer effective
interaction ranges, will result in a larger feasible domain in the
geometric phase space. Although the results in Figure 2 apply
to fairly simple structures, they provide a baseline for
describing geometric phase space of more complex structures.
Next, we study colloidal constructs built from multi-

component colloidal molecules. These structures involve
more complex geometrical constraints than those made from
simple spherical particles. The first system we study here is a
superstructure grown via self-assembly of two types of clusters,
cubic and octahedral,65 where each cluster is formed from
permanently bonded colloidal particles. A detailed picture of
this construct is shown in Figure 3a. For this structure, the
necessary geometric condition is achieved by establishing
proper contact between the cubes and the octahedra for 4-fold
blue−yellow directional interactions. Similar to the previous
case, our algorithm navigates this 2-D phase space to find
possible sets of (σB,σY) that can deliver the desired
superstructure shown in Figure 3a. The phase behavior is
investigated for different values of separation parameter, s. We
also introduce the maximum relative size ratio of the two
particle types, rmax, as another control parameter. Here, rmax
defines an upper threshold for the ratio of σB and σY, while 1/
rmax sets the lower bound, thus providing the flexibility to limit
the relative size of the two building block types within a
desirable range. The sample phase diagram shown in Figure 3b
evaluates the particle sizes within the range of 100−350 nm for
different values of s and rmax while assuming a lattice parameter
of a = 1000 nm for the superstructure. The green, blue, and red
regions show the feasible range of particle sizes for the
formation of the superstructure. As expected, for larger values
of separation parameter s, the feasible domain is larger. The
black line corresponds to the idealized limit with s = 1, which
relates to the case of an exact contact between two spheres
without considering the soft interaction potential. In this case,
the feasible region is reduced to a line and provides a purely
geometric constraint that matches analytical geometric
calculations. Figure 3c shows the variations of the feasible
geometric domain with the lattice parameter of the super-
structures. We observe that the general shape of the feasible

Figure 2. Geometric phase diagram for binary structures of spherical
colloidal particles. σB and σY refer to blue and yellow particle
diameters; s specifies the distance between two particle surfaces
corresponding to their equilibrium distance. The blue and red regions
on the diagram show the feasible domain of σB and σY for different
values of s for (a) cesium chloride structure and (b) zincblende
structure, both with a target lattice parameter of a = 1000 nm.
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domain remains the same with changing target lattice
parameter, which showcases the consistency of the geometric
search algorithm used in this study.
We apply the same method to explore the geometric phase

space of other types of superstructures. Figure 4 illustrates the
resulting feasible domains for three other types of structures
made through various combinations of tetrahedral building
blocks. The first superstructure is a Laves phase, with
MgSnCu4 symmetry, formed by two types of spherical particles
and one type of tetrahedral cluster.31,32 The second and third
superstructures are diamond symmetries formed through
assembly of tetrahedral and linear building blocks.65 For the
MgSnCu4 structure, there are four relevant geometric
parameters: the diameters of the three particle types, that is,
σY, σB, σR, and the sintering parameter, σcc, which defines
possible overlap between (yellow) particles belonging to a
tetrahedral unit. For the combinations of tetrahedral and linear
units or the combination of two types of tetrahedra, three
relevant geometric parameters, σY, σB, and σR, are considered.
Additionally, the geometry of individual tetrahedra imposes a
condition on the relative size of yellow and red particles.65 In
essence, the structures are formed by carefully selecting the
building blocks and the interactions among all possible particle
pairs that are described by a set of inequalities during the
analysis phase upon considering both the particle types and
their relative positions. The resulting feasible geometric phase
space for these structures reside in 3-D or 4-D (hyper) space
and are shown as 2-D projections in Figure 4a−c for a few
combinations of the corresponding parameters.
In order to provide a measure for the size of the feasible

domain within geometric phase analysis, we introduce the
Geometric Landscape Accessibility (GLA) parameter for a
structure. GLA is defined as the ratio of the size of feasible
domain to a reference domain such that the relative
measurement can be compared across structures. In this
regard, the base region formed by allowing each diameter to
vary in the range (0,a), that is, from zero to the value of lattice
parameter, has been taken as the reference. For complex
structures, this reference region would essentially be a
hypercube of volume an where n is the number of relevant
parameters. Figure 5 shows a summary of GLA values for
superstructures introduced above, with the corresponding area
or volume of the feasible domains approximated by a convex
hull. We observe that the maximum GLA for the combination
of cubic and octahedral structures is around 0.2%, while the

tetrahedral units show maximum geometric landscape
accessibility of around 0.02%. This is consistent with the fact
that for tetrahedral systems considered here, the size of the
center red particles constitutes an additional geometric
restriction that reduces the size of the feasibility domain. In
general, for systems with higher numbers of geometric
parameters or highly constrained geometry, we expect the
GLA to be smaller. Furthermore, it is worth mentioning that
with purely geometric constraints that disregard the interaction
range, such as the case for the black line shown in Figure 3b,
the feasible domains may be reduced to single lines or
collections of lines, which reduces the GLA to zero. GLA can
be interpreted as the relative difficulty in finding the
geometrically feasible region inside the solution space. If the
feasible region is unknown to the optimization algorithm, as is
generally the case for complex structures, the algorithm starts
searching from a random location, and for structures with
lower GLA, it will spend considerable time outside the feasible
domain during run-time. In reference to Figure 1b, many trial
sets will be rejected by the geometric compatibility test, and
only those consistent with geometric constraints will be
evaluated for material properties.

Investigation of Structure−Property Relations. After
exploring the geometric phase space and identifying feasible
combinations of geometric parameters that guarantee the
formation of the desired structures, we focus on target
properties that derive from the inverse material design
approach. Optimization algorithms used here adequately
handle solution spaces that are presumably nondifferentiable
and sparse in nature. As mentioned earlier, we explore
photonic properties of the colloidal structures and specifically
focus on finding structures that deliver target photonic band
gap sizes. In reference to photonic properties, the solution
space maps to photonic band gap sizes in a complex way
dictated by the physical properties and the geometry of the
building blocks. For a trial set of particle diameters generated
by the algorithm mapped into the photonic band gap space,
there are three possible scenarios that can happen. First, the
target structure may not exist for the trial set due to geometric
incompatibility, which produces an error in the compatibility
test. In the second case, a structure may exist but that
particular configuration may not have a band gap. Finally, the
structure may have a band gap in which case it will be
registered as a non-negative number. Metaheuristic methods

Figure 3. (a) Formation of cube-octahedron superstructure from self-assembly of two types of colloidal clusters. σ, s, and rmax represents particle
diameters, particle separation, and size ratio upper limit, respectively. (b) Geometric phase diagram of the superstructure for target lattice parameter
of a = 1000 nm. (c) Variations of feasible region for different lattice parameters.
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such as Genetic Algorithm (GA) are known to handle such
spaces adequately well.
Each particle type within each structure introduces two

degrees of freedom: σi representing particle size and ϵi
representing the dielectric constant of the material for particle
type i. Genetic Algorithm is used to explore various
combinations of these parameters for each structure and
detect the maximum photonic band gap size along with the
corresponding σ and ϵ for each particle type. Particle size

combinations are constrained based on the geometry and
interaction pattern, which are unique to the structure. For
example, for the superstructures formed from two types of
tetrahedral clusters, following the geometric phase space
obtained in Figure 4c, the Genetic Algorithm generates a
trial set with 4 values for particles diameters (σR, σY, σB, σG)
and 4 values for the material dielectric constants (ϵR, ϵY, ϵB,
ϵG), and subsequently calculates the photonic band gap
corresponding to the overall superstructure with the selected

Figure 4. Geometric phase diagram for superstructures made with tetrahedral units, shown for particle separation s = 1.05 and size ratio upper limit
rmax = 1.05. σi refers to the particle diameter of color i. (a) MgSnCu4 symmetry formed by two types of spherical particles and one type of
tetrahedral cluster. (b) Superstructure formed by combination of tetrahedral and linear clusters. (c) Superstructure assembled from two types of
tetrahdral clusters.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.9b05335
J. Phys. Chem. B XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1021/acs.jpcb.9b05335


parameters. The GA introduces the trial sets, called generations,
in a batch to batch fashion and repeats this cycle until it finds
the set of 8 parameters that optimize (maximize) the band gap
size. Figure 6 demonstrates the outcome of GA-assisted
optimization scheme for this superstructure. Employing the
GA with an allowed diameter range of 100−400 nm at a =
1000 nm and dielectric constant values in the range of 2−18,
we obtained the optimized parameter set shown in Figure 6a

with maximum band gap size of 15.45% between the eighth
and ninth bands within the photonic spectrum.
Considering other colloidal constructs discussed earlier,

Figure 7 shows the optimization outcomes for different

structures of simple spherical particles. For the diamond-like
structures in Figure 7a, each particle has a diameter of a3 /4
allowing mutual contacts between the particles. The particles
in the periodic unit cells are assumed to have dielectric
constants different from the background material. In total, the
search space has 9 independent dimensions. The GA analysis
converges at a maximum band gap size of 10.40% for the
parameter values shown in Figure 7a. This result shows that a
significant departure from the native diamond structure is
possible if various particle types exist within the unit cell that
implement large variations in dielectric properties. In a similar
manner, we consider the zincblende structure in a five
dimensional optimization study. The parameter set includes

Figure 5. Geometric Landscape Accessibility (GLA) values calculated
for different superstructures of colloidal clusters. “Tet.”’ and “Oct.”
refer to tetrahedral and octahedral units, respectively, s refers to
particle separation, and rmax denotes maximum allowed particle size
ratio.

Figure 6. (a) Optimized parameters for Tet. + Tet. superstructure.
(b) Corresponding band structure with maximized band gap size of
15.45%.

Figure 7. GA optimized structures of (a) diamond (packing factor
0.34), (b) ZnS (packing factor 0.34027), (c) FCC (packing factor
0.244), and (d) CsCl (packing factor 0.36) structures with the
optimized value of the total band gap for the given configurations (e).
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the dielectric constant of two types of particles as well as the
background material and the diameters of blue and red
particles. Confining the parameter search to the corresponding
geometric phase space, we found a maximum band gap of
10.48% for the configuration in Figure 7b.
Next, to analyze a FCC-type structure, we allowed the

genetic algorithm to modify both the diameters and dielectric
properties of the particles, as well as the dielectric property of
the background material, forming a 9 dimensional solution
space for 4 particle types. As opposed to the other structures
we discussed so far, here we eliminated the close-packing
constraint to allow for more degrees of freedom, as non-close-
packed assemblies of colloidal particles have been previously
reported in a considerable number of studies in the literature.
We explored particle diameters in the 50−1500 nm range and
dielectric constants between 1 and 20. Contrary to the ideal
FCC structure with one particle type that does not show any
band gaps,66 we found a band gap of 4.08% for the
configuration shown in Figure 7c. Similarly, we analyzed the
CsCl structure with BCC symmetry with five degrees of
freedom. For this case shown in Figure 7d, the GA converged
at a maximum band gap size of 2.48%.
Comparing the results obtained here for the TT structure to

our previous study,65 GA found a wider band gap for this
structure at a dramatically reduced effort. In case of the
diamond-like structures, the existence of a photonic band gap
for this symmetry is well established.67 In this study, however,
we relaxed the constraints on the physical properties of the
particles to explore other possibilities. The GA predicted
diamond like configuration possesses a relative photonic band
gap width of 9.54%, which puts this configuration at the upper
limit of what has been obtained from “direct-diamond”
structures made from colloids.68 This flexibility is again
realized for the case of FCC where the GA search reproduced
the existence of complete photonic band gap for FCC at low
filling fraction with no prior knowledge about the system.69

Further advantage lies in the fact that a certain value of
photonic band gap can be “targeted” to reverse engineer the
refractive contrast requirements.
As mentioned previously, the Genetic Algorithm accesses

the solution space in a sparse fashion. In Figure 8, the access
pattern for diameter and dielectric property of blue particles
from FCC structure and its background material is shown. The
color bar shows when a set was picked by the GA and the
height is a measurement of how often a certain value was
selected. We observe that the GA accessed few values outside
the allowed ranges. This is due to the statistical nature of trial
set generation and was dealt with by assigning an error during
compatibility test. It is also worth mentioning that GA rarely
finds the true optimum solution and the definition of
convergence is often a compromise between desired accuracy
and computational effort. Additionally, similar to other
optimization algorithms, the convergence rate can be slow or
fast depending on the solution space, selection of GA related
parameters, and starting point. For the structures considered in
this study, the FCC case is, in fact, an example of slow
convergence for the GA. The overall convergence occurred
well after the 40th iteration, where convergence was declared
once the population standard deviation of the target property
values (fitness) became less than 0.5 for 5 successive
generations. However, when focusing on the best candidate
from each generation, the convergence pattern becomes clear
within a few generations. The convergence pattern for a few of

the structures in this study is provided in Figure 9. We note
that the staircase-like shape of the fitness progression is a
characteristic of the GA optimization scheme, and the rather
unusual kinks in the plot for the cases of diamond and FCC
structures is a result of allowing relatively larger population
sizes and higher rates of mutation.

■ CONCLUSIONS
In summary, we established a GA-assisted framework to
facilitate inverse material design with micro- and nanoscale
colloidal building blocks. Target properties are the driving
factor for this purpose, and the characteristics of the building
blocks such as particle size and dielectric constant, are selected
so that the overall structure exhibits the target property. We
also demonstrated the accessible geometric phase space that
limits the available choices for particle size and building block
shape within the material design procedure, which is a direct
result of the geometric constraints for different superstructures
and symmetries. Based on the geometric constraints, we
introduced Geometric Landscape Accessibility (GLA) as a
measure of the size of the feasible domain within the geometric
parameter space. We showed that for complex building blocks

Figure 8. GA access pattern for the (a) diameter and (b) dielectric
constant of the blue particles within the FCC structure and (c) the
dielectric constant of the background material.
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such as colloidal molecules, GLA turns out to be a typically
small value below 1%. Furthermore, the geometric landscape
often turns out to be quite complicated to be explored with
analytical methods and thus needs to be investigated with
efficient computer algorithms embedded within the GA-
assisted material design framework. As demonstrated, the
framework was utilized to optimize photonic band gap size of a
variety of colloidal superstructures, constrained with the
available values of geometric parameters dictated by the
geometric phase space analysis. It is also worth mentioning that
in this study only monodisperse crystalline phases have been
considered. The presence of polydispersity can manifest itself
in the form of structural defects or property variations across a
single structure. Such effects may be accounted for by using
stochastic methods embedded within the GA framework,
which is beyond the scope of the tools used in this paper and
needs to be investigated in detail in future studies. The
strength of this approach lies in the fact that the same
framework could be used to design structures with different
types of target properties, including but not limited to
materials with desired phononic, thermal, and mechanical
characteristics. This work paves the way for future efforts to
take advantage of Genetic Algorithm and machine-learning-
based frameworks to streamline property-driven design of
metamaterials with colloidal building blocks.

■ METHODS
For computing the geometrically feasible region, the geometric
constraints are first expressed in terms of a set of inequalities
by considering the diameter and coordinates of the associated
particles at their desired locations. In the next step, we employ
a brute force method to search the probable geometric region.
A constraint that no particle in the structure can have a
diameter larger than the lattice parameter is applied. Therefore,
each diameter can assume a value between zero and the lattice
parameter, a. Furthermore, the “area” or the “size” of the
reference geometric region based on the maximum allowable
limit for each diameter will be equal to an, where n represents
the number of dimensions of the geometric space. Once the
geometrically feasible regions are identified, we use convex hull

approximation to obtain the size of each region. The ratio of
the size of the feasible region to the size of the reference region
provides the GLA value. For example, in Figure 4 the GLA is
calculated as the ratio of the area of the green region divided
by 106 nm2 for each case.
The GA-assisted material design framework was imple-

mented in Python programming environment with Distributed
Evolutionary Algorithms in Python (DEAP) package for
Genetic Algorithm70 implementation. During simulation, the
population size was taken to be 32 for the Tet. + Tet. structure
and 128 for all the other structures. Initial population was
created using the built-in random number generator. Uniform
crossover and Gaussian mutation with tournament selection
(size = 2) were used throughout the test. Crossover and
mutation rate for various structures varied between the values
of 0.995, 0.005 and 0.95, 0.05. Photonic band structures were
computed using MPB software package71 for the lowest 15
bands at 16 × 16 × 16 grid with basis vectors along the
Cartesian coordinates and along the critical points of the first
Brillouin zone of the respective structures. Overall simulation
time (based on convergence of best individual) ranged from
about 6 CPU hours (Tet. + Tet. structure) to above 200 CPU
hours (structures from Figure 7).
The major criterion that lead to acceptance or rejection of

each trial set was its consistency with the geometric phase
space of the desired structure and was closely linked to the
existence and complexity of the geometric landscape test. For
Tet. + Tet. structure, only 73% of the total sets were evaluated
for property optimization due to geometric incompatibility of
the rest of parameter sets. This percentage varies with
generation and becomes almost 100% toward the end of the
optimization steps. For diamond structure, this percentage was
100% throughout the whole run time (due to the absence of
geometric compatibility test) except for rare cases of dielectric
constant falling outside the allowed range. Overall, acceptance
of a trial set within the GA cycle and the computational effort
toward optimization is a function of solution space’s volume,
dimension, and complexity, choice of GA parameters,
definition of convergence, and desired accuracy and quality
of the solution.
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