
ACCELERATING ATM SIMULATIONS USING DCS

Accelerating ATM Simulations Using
Dynamic Component Substitution (DCS)
Dhananjai M. Rao
CSA Department
Miami University
Oxford, OH 45056
raodm@muohio.edu

Philip A. Wilsey
Department of ECECS
University of Cincinnati
Cincinnati, OH 45221-0030

The steady growth in the multifaceted use of broadband asynchronous transfer mode (ATM) networks
for time-critical applications has significantly increased the demands on the quality of service (QoS)
provided by the networks. Satisfying these demands requires the networks to be carefully engineered
based on inferences drawn from detailed analysis of various scenarios. Analysis of networks is often
performed through computer-based simulations. Simulation-based analysis of the networks, includ-
ing nonquiescent or rare conditions, must be conducted using high-fidelity, high-resolution models
that reflect the size and complexity of the network to ensure that crucial scalability issues do not dom-
inate. However, such simulations are time-consuming because significant time is spent in driving the
models to the desired scenarios. In an endeavor to address the issues associated with the aforemen-
tioned bottleneck, this article proposes a novel, multiresolution modeling-based methodology called
dynamic component substitution (DCS). DCS is used to dynamically (i.e., during simulation) change
the resolution of the model, which enables more optimal trade-offs between different parameters such
as observability, fidelity, and simulation overheads, thereby reducing the total time for simulation.The
article presents the issues involved in applying DCS in parallel simulations of ATM networks. An
empirical evaluation of the proposed approach is also presented.The experiments indicate that DCS
can significantly accelerate the simulation of ATM networks without affecting the overall accuracy of
the simulation results.

Keywords: Parallel simulation, Time Warp, dynamic multiresolution parallel simulations, proactive
abstraction, reactive refinement, dynamic component substitution (DCS)

1. Introduction

Asynchronous transfer mode (ATM) networks are heavily
used in the communication backbones to meet the growing
needs and demands of modern, time-sensitive networking
and multimedia applications such as video conferencing
[1, 2]. For instance, AT&T has invested more than $10 bil-
lion from 2002 to 2005 to update its frame relay/ATM
networks in just the Asia Pacific region alone [3]. In ad-
dition, time-critical applications such as wide-area moni-
toring and control systems are also deployed using ATM
networking infrastructures [2]. Recently, ATM networks

SIMULATION, Vol. 82, Issue 4, April 2006 235-253
©2006 The Society for Modeling and Simulation International
DOI: 10.1177/0037549706067271

have enabled long-distance, real-time robotic surgeries to
be performed [4], opening the gateway to radically new
concepts in different walks of life. The recent proliferation
of VOIP (voice over IP) telephony has in turn increased in-
terest in ATM networks that are often used as the backbone
of voice and video networks [5].

Modern real-time applications place heavy demands on
the performance and quality of service (QoS) provided by
ATM backbones. The QoS provided by a network is of-
ten measured as a combination of several factors, such
as latencies or delays, bandwidth, availability, reliability
(low data loss), and security [2]. In recent years, guar-
antees on the QoS provided by broadband networks have
become indispensable [6]. The current trends indicate that
the QoS has possibly superseded all other aspects in broad-
band networks. Consequently, service providers as well as

Volume 82, Number 4 SIMULATION 235

Rao and Wilsey

commercial end users require and demand accurate QoS
estimates.

Developing good estimates of QoS requires in-depth
analysis of the networking infrastructure. Specifically, the
behavior of the network under nonquiescent scenarios such
as heavy traffic, congestion, failure, malicious usage, and
attack must be studied. To be most effective, such analysis
must include scenarios that may occur rarely during the
life of the network [2, 7]. These studies are also required to
develop admittance policies, security or policing measures,
and recovery procedures for the network. Lack of in-depth
analysis of rare scenarios may lead to a drastic decrease of
system performance and result in catastrophic failures.

Analytical techniques are some of the most popular ap-
proaches for studying quiescent conditions of ATM net-
works [7]. They are typically used to estimate quiescent
characteristics of the networks and have shown to yield
sufficiently accurate results. However, nonquiescent con-
ditions continue to pose a challenge [8]. Some of the dom-
inant bottlenecks in the analysis of nonquiescent condi-
tions are the following: (1) the nonlinear and often random
characteristics make it mathematically intractable; (2) the
impacts vary significantly, depending on the network con-
figuration, technology, and chosen scenario; (3) the size of
the networks makes analytical studies a time-consuming
task; and (4) several scenarios or “rare events” occur very
infrequently; probabilities are typically in the range of 10−6

to 10−9. Unfortunately, these rare events or rare phenom-
ena must be analyzed to develop efficient networks and
reasonable estimates of QoS [7].

The size and complexity of the networks, in conjunction
with the need to ease analysis of nonlinear conditions, has
necessitated the use of simulation for their study. Simula-
tions have been widely employed for analyzing ATM net-
works [7], and numerous simulation methodologies have
been proposed to accelerate the study and analysis of “rare
events” (or rare phenomena) in ATM networks [7]. In these
methods, high-fidelity, high-resolution models are required
to conduct in-depth study and analysis. Furthermore, the
models must reflect the size and complexity of the network
to ensure that crucial scalability issues do not dominate
during validation of simulation results [6]. Events that are
rare or that do not even occur in toy models may be com-
mon in the actual networks that the model is supposed to
represent.

Simulation of rare scenarios using high-fidelity, high-
resolution models is a time-consuming task [6]. Even the
use of sophisticated parallel simulation techniques does not
significantly alleviate this bottleneck. One of the primary
bottlenecks in simulating rare scenarios is that significant
time is needed to drive the models to the scenarios of in-
terest [7]. That is, simulations of quiescent conditions of
the network are necessary to “set up the stage” for simulat-
ing rare scenarios. However, the time spent in simulating
quiescent conditions is merely an overhead because the
data from such scenarios are inconsequential to the study
of rare events. Unfortunately, there is a void of simulation

tools that enables efficient study and analysis of selected,
nonquiescent scenarios in ATM networks.

Accordingly, this study proposes an approach involving
the use of multiresolution models to accelerate ATM net-
work simulations to scenarios of interest. Figure 1 presents
an overview of the proposed solution. As illustrated in the
figure, the idea is to use a sufficiently accurate, abstract
(or low-resolution), but faster model in quiescent condi-
tions and use higher resolution models for detailed simu-
lation when scenarios of interest appear in the simulation.
The transition between the different levels of resolution is
achieved using a novel methodology called dynamic com-
ponent substitution (DCS). DCS enables changes to the
resolution of a model by dynamically (i.e., during simula-
tion) substituting a set of components called a “module”
with a functionally equivalent component. Depending on
the resolution (or details) required for the simulation study,
DCS is used to dynamically change the model between the
two or more configurations (as shown in Fig. 1), thereby en-
abling more optimal trade-offs between several modeling-
and simulation-related parameters. The idea is to reduce
the time spent simulating inconsequential scenarios with-
out significantly affecting the overall objectives of the sim-
ulation study. Note that, if the simulation time frames are
decreased, then a number of other simulation-based anal-
ysis techniques (see section 4) will also benefit from the
proposed approach.

This article explores the issues involved in applying
DCS to accelerate ATM network simulations to scenar-
ios of interest. The remainder of this article is organized as
follows. Brief background information on ATM networks
is presented in section 2. Section 3 presents a detailed dis-
cussion of DCS. Section 4 presents an overview of some of
the closely related research activities. Section 5 presents a
brief overview of WESE (Web-based Environment for Sys-
tems Engineering) [9], which is a Web-based modeling and
simulation framework that has been used in this article to
evaluate DCS. Section 6 presents the ATM components
developed using WESE’s Application Program Interface
(API). A detailed discussion of the strategy employed to
trigger DCS transformations inATM models is presented in
section 7. Section 8 presents the statistics collated from the
experiments conducted to evaluate the effectiveness of the
proposed approach. The ATM network models used in this
study are also presented in this section. Finally, section 9
concludes the article, summarizing the work presented.

2. Background on ATM Networks

ATM is a multiplexing technology designed to be a general-
purpose, connection-oriented communication network for
a wide range of services [2]. ATM networks are connection
oriented because nodes on the network must establish a
connection or virtual path between them to transmit data.
The transmitted data are split into a number of fixed-size
blocks called cells. Each cell has a fixed size of 53 octets
(or bytes), which is subdivided into a 5-octet header and a

236 SIMULATION Volume 82, Number 4

ACCELERATING ATM SIMULATIONS USING DCS

ATM
Cloud

ATM
Cloud

R
es

ol
ut

io
n

H
ig

h

(

in
te

re
st

)

Switches

L
ow

(s
ce

na
ri

os
 o

f)

Client

M
or

e
de

ta
ils

bu
t S

lo
w

er
L

es
s

de
ta

ils
bu

t F
as

te
rDCS

DCS
DCS

DCSR
es

ol
ut

io
n

Figure 1. Overview of proposed approach for asynchronous transfer mode (ATM) network simulations

48-octet payload. The cell header identifies the destination,
cell type, and priority. The virtual path identifier (VPI) and
virtual channel identifier (VCI) fields in the header provide
necessary connection information.

An ATM network is built by suitably interconnecting
a set of ATM switches. An ATM switch forms the core
hardware unit in an ATM network through which clients
or nodes are interconnected. The ATM switch performs
the following tasks: it acts as a gateway to the network;
performs route discovery and management; performs cre-
ation, management, and closing of connections between
clients; and performs multiplexing cells in the network.
An ATM switch essentially implements the various layers
of the B-ISDN/ATM protocol stack based on the Interna-
tional Telecommunication Union (ITU-T) and ATM forum
recommendations [2, 10]. The various layers in the ATM
protocol stack and their functions are shown in Figure 2.
The lower-most layer in the protocol stack is the physi-
cal layer. The physical layer interfaces with the physical
medium and extracts ATM cells into time division multi-
plexed frames that are further processed by the ATM layer.

The ATM layer forms the core layer in the protocol
stack. Its primary task is to perform multiplexing, switch-
ing, and control actions. The ATM layer uses the VPI and
VCI fields in a cell to perform the multiplexing. In addition,
theATM layer also performs the task of interfacing with the
user and other switches through the suitable user-network
interface (UNI) and network-network interface (NNI). In
conjunction with the management layers, the ATM layer
uses the private network-to-network interface (PNNI) pro-
tocol for route discovery and management. TheATM adap-
tation layer (AAL) forms the top-most layer in the protocol
stack. As shown in Figure 2, the AAL has two sublayers:
segmentation and reassembly (SAR) and the convergence
sublayer (CS). The CS is further broken down into com-
mon part (CP) and service-specific (SS) components. The
AAL provides different classes of services to accommo-
date constant and variable bit rate traffic flowing through

the ATM network. Further details on ATM networks are
available in the literature [2].

3. Dynamic Component Substitution (DCS)

DCS is a generic methodology for changing the resolution
(or level of abstraction) of any hierarchical, component-
based model [9, 11]. In a component-based model, a sys-
tem is represented as a set of interconnected components
[9, 11]. A component is a well-defined entity that is viewed
as a “black box” (i.e., only its interface and functionality
is of interest and not its implementation). However, dur-
ing simulation, each atomic component is associated with
a logical process (LP) or a simulation object (a specific,
well-defined software unit) that implements its behavior
and functionality. A component could, in turn, be specified
using a set of subcomponents.A set of interconnected com-
ponents with a well-defined interface is called a module.
A module can be viewed as a logical component. Modules
are conceptual, convenient abstractions that enable devel-
opment of hierarchical models and ease modeling of large
systems [9].

In DCS, changes to the resolution of a model are
achieved by substituting a module (i.e., a set of compo-
nents) with a functionally equivalent module or vice versa.
The equivalent module is chosen such that the overall char-
acteristics of the model are not altered and deviations in
the simulation results due to DCS are within acceptable
limits. The equivalent module may contain one or more
components. In practice, the equivalent module typically
contains a single component. In such cases, the module
is simply called an equivalent component. An equivalent
module or component must satisfy the following criteria:

1. Interface equivalence: Equivalent modules must
have an interface that is identical. The interface spec-
ification also includes the type of events that can be
processed or generated by the LP associated with the

Volume 82, Number 4 SIMULATION 237

Rao and Wilsey

Physical Medium (PM) Sublayer
[Bit timing, physical medium]

[Call Header Generation/Extraction]
[Cell VCI/VPI Translation]
[Cell Multiplexing/Demultiplexing]

[Generic Flow Control]

[Transmission Frame Generation, Adaptation, & Recovery]
[Cell Rate Decoupling, Cell Delineation]

Transmission Convergence (TC) Sublayer

Control Plane User Plane

L
ayer M

anagem
ent

P
lane M

anagem
ent

Segmentation & Reassembly (SAR) Sublayer

Service Specific (SS)

Common Part (CP)Convergence
Sublayer (CS)

Layer
Adaptation

Physical
Layer

ATM
Layer

ATM

Management Plane

Higer LayersHiger Layers

Figure 2. Overview of B-ISDN/ATM protocol stack (ITU-T & ATM Forum standard)

component. The interface equivalence property en-
sures that DCS transformation occurring to a module
is completely transparent to any other interconnected
component.

2. Functional equivalence: The equivalent modules
must have similar functionality, as defined by the
modeler. In other words, the behavior and function-
ality of a given pair of equivalent modules need not
be identical but within acceptable limits. This flex-
ibility enables the application of different forms of
abstractions to the model. This criterion is a weaker
requirement than the interface invariance property.

Substitution of components may be done statically or
dynamically. Static abstraction occurs during model de-
velopment or prior to commencement of simulation. Static
component substitution is widely used in different flavors
to address capacity and performance issues of large-scale
simulations [12, 13]. The primary drawback of the static
methods is that the trade-off between fidelity, resolution,
and simulation overheads cannot be altered during sim-
ulation. On the other hand, substituting components dur-
ing simulation provides a dynamic trade-off between the
modeling- and simulation-related parameters. Dynamic
flavor of DCS can be further classified into the following
categories:

Proactive DCS: Approaches in which DCS transforma-

tions are scheduled to occur in the future (with respect to
simulation time) are classified as in the proactive strategies.
Proactive strategies are used when the scenarios for trig-
gering DCS are known a priori. Typically, such strategies
are used to drive the model to configurations that are known
to improve performance. However, detecting suitably sce-
narios and triggering proactive transformations can be a
complex task.

Reactive DCS: In reactive strategies, DCS transforma-
tions are scheduled at the current simulation time or in the
past.A number of approaches can be adopted for achieving
changes in the past. For example, a check-pointing and roll-
back mechanism can be used to restore an earlier state of the
simulation and perform the DCS transformations. Reactive
strategies are used to detect and recover from possibly in-
correct or inefficient proactive transformations. Typically,
detecting scenarios requiring reactive transformations is
easy. However, providing the simulation infrastructure for
reactive transformations can be a complex task.

DCS can be used to enable more optimal trade-offs be-
tween several modeling, simulation, andV&V (verification
and validation)–related parameters. This study uses a com-
bination of proactive DCS abstraction and reactive DCS
refinement of the model to accelerate ATM simulations.
Furthermore, DCS enables effective “what-if” analysis and
exploration of design alternatives to be carried out during
the lifetime of a simulation by striking a dynamic trade-

238 SIMULATION Volume 82, Number 4

ACCELERATING ATM SIMULATIONS USING DCS

off between resolution, fidelity, and performance [14]. It
is also an attractive solution to accelerate rare event simu-
lations [6]. In addition, DCS is an effective technique for
enabling large-scale simulations [15]. It can also be used to
ease debugging by rapidly accelerating simulations to sce-
narios of interest [6]. It enables more thorough validation
of simulations by analyzing the model at different levels of
abstraction [6]. However, analogous to any multiresolution
approach, care must be taken when applying DCS to avoid
several modeling and simulation pitfalls, such as tempo-
ral inconsistencies, ghosting of attributes, high transition
latency, thrashing, and degradation in fidelity [6, 16].

One of the most attractive and important aspects of DCS
is that an algebra has been developed about a mathemat-
ical framework for reasoning about the changes induced
in the model by DCS transformations [17]. The algebra
has its foundations in discrete mathematics and set the-
ory. The algebra clearly defines and delineates the various
transformations that can be induced in the model. Based on
the axioms underlying the algebra, it has been proven that
a sequence of DCS transformations satisfies properties of
closure, associativity, inverse, and identity, thereby making
DCS transformations a “group” (in discrete mathematics)
[18]. In other words, DCS is not an ad hoc approach. More-
over, a number of discrete mathematics tools and laws can
be applied to further extend and ease mathematical anal-
ysis. For example, if all the transformations are unique
(i.e., the set of components of modified various DCS oper-
ations does not overlap), then it can be shown that the set of
transformations forms an Abelian group [18]. In addition,
statistical extensions to DCS algebra have been employed
to develop a DCS performance prediction methodology
(DCSPPM). DCSPPM provides quantitative estimates of the
performance changes induced by DCS [17, 19]. The quan-
titative estimates enable a modeler to identify optimal, dy-
namic model configurations prior to simulation [19]. These
aspects make DCS a rigorous and efficient approach for
performing multiresolution simulations. Further details on
DCS are available in the literature [6, 15, 17, 20].

4. Related Research

This work addresses two broad areas—namely, multireso-
lution modeling and simulation of ATM networks. DCS
is an alternative approach for multiresolution modeling
and simulation. The context (or application domain) of
this work is accelerating the simulations of ATM networks
to nonquiescent conditions. A brief overview of only the
most closely related research activities is presented in the
following subsections because a detailed literature survey
of these broad areas is beyond the scope of this article.
Readers are referred to the literature for further references.
Section 4.1 presents some related research in the domain
of dynamic resolution simulations, in which the level of
abstraction of the model varies during the course of sim-
ulation. Some of the related research in the field of ATM
network simulations is presented in section 4.2.

4.1 Dynamic Resolution Simulations

A number of studies have been reported on selectively ab-
stracting parts of a model to enable efficient trade-offs be-
tween several model- and simulation-related parameters.
However, many of the studies involve static abstractions
that are preformed prior to commencement of simulation,
which is not the context of this work. This study deals with
dynamically (i.e., during simulation) changing the resolu-
tion of the model, and only those investigations relevant to
this work are briefly described in this section.

Ahn and Danzig [21] have demonstrated that abstrac-
tion can be employed to adjust the simulation granularity
of packet network models to efficiently study flow and con-
gestion control algorithms. Their work deals with dynam-
ically combining a cluster of closely spaced packets into
a train and operating on the train rather than individual
packets. In this research, we dynamically abstract or refine
ATM subnets to accelerate the simulation. Hybrid simula-
tion models, wherein the network model is a combination
of discrete event and analytical components, have been
used to yield efficient yet accurate simulations [22]. Davis
and Hillestad [23] present a discussion on applying vari-
able resolution modeling (VRM) techniques to the domain
of military models. Their work deals with applyingVRM to
military models, while this work deals with ATM network
simulations. Lee and Fishwick [24] discuss a taxonomy for
abstraction of dynamic systems through structural simpli-
fications, behavioral approximations, and data abstraction.
This research deals with dynamically selecting appropriate
equations to represent characteristics of a system as sim-
ulation progresses and the system’s state changes. On the
other hand, this research deals with dynamically changing
the components constituting the model, specifically in the
domain of ATM networks.

One of the closest research activities related to DCS is
by Natrajan, Reynolds, and Srinivasan [25] and Reynolds,
Natrajan, and Srinivasan [16]. They propose the use of mul-
tiple resolution entities (MRE) to enable dynamic changes
to the abstraction or resolution of a model. They provide
a framework for maintaining consistency across multiple
levels of resolution, using an MRE that can be developed.
They present some of the issues such as ghosting, chain
disaggregation, and network flooding to motivate their ap-
proach. In MRE, all desired levels of resolution are con-
ceptually active throughout the simulation. Contrarily, in
DCS, only one level of abstraction is active at any given
point in simulation time. We believe that maintaining only
a single level of abstraction is critical for achieving high
performance. MRE does not deal with changing or trig-
gering changes in resolution because the various levels are
concurrently maintained. On the other hand, DCS has an
explicit concept of triggering transformations in a proac-
tive or reactive manner. An MRE component typically has
multiple interfaces at different levels of resolution. Con-
versely, in DCS, a component has only a single interface
exposed for model development. Leveraging the premise

Volume 82, Number 4 SIMULATION 239

Rao and Wilsey

of a single interface, we have developed a DCS algebra
based on set theory and discrete mathematics. The DCS
algebra provides a more robust framework for mathemat-
ical analysis of DCS [6]. Furthermore, component-based
modeling using single interfaces yields itself toV&V using
the formal software engineering and automated theorem,
proving Rao [6]. Last but not the least, we have developed
a sophisticated DCSPPM for predicting changes in simu-
lation performance due to DCS [19]. DCSPPM enables ef-
fective use of DCS by identifying performance-improving
transformations prior to simulation and selectively apply-
ing those transformations [6, 19]. We believe these aspects
are crucial for the successful use of dynamic resolution
models and simulations. These aspects significantly dif-
ferentiate DCS from all of the earlier investigations in the
area of dynamic resolution modeling.

4.2 ATM Network Simulations

The steady advancement in technology coupled with grow-
ing needs and demands has resulted in significant concerns
about QoS of broadband and telecom networks [7]. The pri-
mary challenges in evaluating today’s networks are strin-
gent limits on QoS requirements, network performance,
increasing size and complexity, tight logical coupling be-
tween subsystems, and cost versus time trade-offs. In an
endeavor to meet the growing need for cost-effective yet ac-
curate analysis of ATM networks, several approaches have
evolved in the recent past. The approaches used for analysis
of broadband and telecom networks can be broadly classi-
fied into three categories—namely, (1) analytical methods,
(2) emulation or direction measurement approaches, and
(3) simulation-based methods.

The analytical methods are typically used to analyze
quiescent condition of networks. Analytical methods rep-
resent the desired aspect of the network under study using
mathematical equations. A variety of mathematical tools
are employed to solve the set of equations to yield vari-
ous system properties. This approach can be very efficient.
However, the primary drawbacks are that it requires a high
level of abstraction, considerable effort and skill, and con-
siderable knowledge of the system. The complexity of to-
day’s networks makes this a formidable and, in many cases,
an impossible task without unrealistic assumptions [7]. In
the emulation or direct measurement approaches, an exist-
ing system or a prototype is used to perform experiments,
and the results obtained are extrapolated to predict the per-
formance of the target system. One of the primary draw-
back of this techniques is that considerable investment is
required for the analysis to be effective. Furthermore, it
does not scale for analysis of large systems. However, it
is effective for testing and analysis of small systems under
development [7]. This research does not deal with analyti-
cal techniques or emulation-based methods. Consequently,
these topics are not explored in this article.

To circumvent the shortcomings of analytical tech-
niques and emulation-based approaches, experimental

methodologies such as computer-based simulations are
widely used. The primary advantage of simulations is that
they can be used to analyze new systems. In addition, sim-
ulations enable exploration of scenarios that would oth-
erwise be impossible to analyze. Furthermore, simulation
is nondestructive and a cost-effective approach. To enable
rapid analysis, simulation-based approaches usually strike
a trade-off between a number of factors such as nature and
type of model used, the nature and type of input vectors
used, and space versus time trade-offs when distributed
computing techniques are employed.

One of the common approaches to accelerate analy-
sis using simulation-based techniques is to decompose the
model into submodels such that the submodels are ana-
lytically tractable. The submodels are analyzed using an-
alytical techniques while the system as a whole is studied
using simulations. Ammar and Deng [26] have shown that
the application of time scale decomposition in conjunction
with Time Warp–based parallel simulations can improve
performance of simulations. The drawback of time scale
or spatial decomposition is that it is very specific to the
system under study and requires system expertise. Fur-
thermore, several restrictive assumptions must be placed
on the model to allow decomposition [7]. In contrast, the
proposed methodology does not make any restrictive as-
sumptions and is broadly applicable to various configura-
tions of ATM networks.

A number of statistical techniques have been proposed
to analyze the results obtained from the simulations. Statis-
tical techniques are used to reduce the variance in observa-
tions, using fewer simulation runs or data points. The use of
antithetic sampling using correlated samples is discussed
by Heegaard [7].An alternative technique is to use common
random numbers on two similar models and use some com-
parative performance measures such that the full system
will have reduced variance if the two models are synchro-
nized. Alternatively, control variables are used to isolate
the influence of variables on the system. However, several
representative statistics are required for applying statistical
techniques. Schormans et al. [27] present a hybrid tech-
nique involving the use of mathematical techniques to rep-
resent background traffic and use cell simulations only for
foreground traffic, thereby accelerating ATM simulations.
A recent dissertation discusses the use of static multireso-
lution network models that use a combination of fluid and
packet flow models to accelerate simulations [28].

Villén-Altamirano [29] proposes the use of the
RESTART approach to improve the occurrence of rare
events in simulations. The basic idea underlying the
RESTART approach is to sample the rare events from a
reduced state space where this event is less rare. In this ap-
proach, a simulation is initially driven close to the scenario
of interest. The probability of the reduced state space oc-
currences is estimated by direct simulation and by using the
Bayes formula to determine the final value. The RESTART
approach can be implemented in different ways. Gorg and
Schreiber [30] present the use of the limited relative error

240 SIMULATION Volume 82, Number 4

ACCELERATING ATM SIMULATIONS USING DCS

(LRE) technique in conjunction with RESTART to control
variability and improve convergence. Villén-Altamirano
[29] presents further extensions to the RESTART method
in which multiple initial states are used to analyze the
probability of occurrence of another state. Kuhlmann and
Kelling [31] present case studies on applying multidimen-
sional RESTART simulations. L’Ecuyer and Champoux
[32] discuss simulation-based techniques for estimating
cell loss ratios in an ATM switch using queuing network
models. They present the use of importance sampling to
improve the efficiency of their simulations.

Parallel and distributed simulation techniques are em-
ployed to reduce the time for simulation. One approach
is to run multiple, concurrent simulations using a shared-
memory multiprocessor or a distributed network of work-
stations. An earlier research activity by Lamers and Gorg
[33] employs this approach. Alternatively, parallel simu-
lation techniques are used to run a given simulation us-
ing multiple processors to reduce simulation time frames.
Bhatt et al. [34] present parallel simulation techniques
based on Time Warp simulations to accelerate simulation
of ATM network models developed using the Telecommu-
nications Description Language (TeD). Pham and Fdida
[35] present the issues involved in cell-level simulation of
large ATM networks using a conservatively synchronized
parallel simulation kernel.

5. Web-Based Environment for Systems
Engineering (WESE)

This section presents a brief overview of WESE [9, 15,
17], which is used later in this article for the performance
studies. An overview of WESE is shown in Figure 3. As
illustrated in this figure, WESE has been developed using a
set of well-defined, asynchronous, interacting, and coordi-
nated subsystems and modules. Each subsystem or module
provides a well-defined and robust interface for configu-
ration, interaction, coordination, monitoring, and control.
Such a modular design philosophy has been motivated by
the need to address several abstract but important aspects
of WESE, such as ease of design and implementation, main-
tainability and troubleshooting, adaptability for future en-
hancements, robustness or fault tolerance, separation of
concerns, ability to interface with third-party subsystems,
and to ease “plug-and-play” of subcomponents. WESE pro-
vides a component-based modeling language, a framework
for developing a Web-based repository of components, and
the infrastructure for DCS-capable distributed simulation.
The following subsections present the modules and sub-
systems constituting WESE in more detail.

5.1 Modeling Frontend

WESE provides both an HTML interface and a text-based
frontend that can be used to interact with the WESE server
(Fig. 3). The primary input to WESE is the model of the
system described using the System Specification Language

(SSL). The specification of a model or an SSL design file
consists of a set of interconnected modules. Each mod-
ule consists of three main sections—namely, (1) the com-
ponent definition section that contains the details of the
components to be used to specify a module (such as the
Universal Resource Locator [URL] of a factory and name
of the source object along with initial parameters), (2) the
component instantiation section that defines the various
components constituting the module, and (3) the netlist
section that defines the interconnectivity between the var-
ious instantiated components. SSL permits an equivalent
component to be associated with each module. DCS is per-
formed by replacing the module with its equivalent com-
ponent or vice versa.

SSL also allows an optional label to be associated with
each module. The label can be used as a component def-
inition in subsequent module specifications to nest one
module within another. This technique can be employed to
reuse module descriptions and develop hierarchical spec-
ifications. The input SSL source is parsed into an object-
oriented (OO) in-memory intermediate form (SSL-IF). Hi-
erarchical SSL models are elaborated or “flattened” prior to
simulation by the elaborator [9]. Elaboration is a recursive
process that flattens a hierarchical model by substituting
each module reference (made through the use of labels)
with an unique instance of the module.

5.2 Simulation Subsystem

The core module of WESE is the server (Fig. 3). The WESE
server performs the task of collaborating with the dis-
tributed factories and coordinating the simulations. The
factory manager performs the tasks of interacting with the
distributed WESE factories using a predefined protocol. A
WESE factory can be viewed as a Web-based repository
of components with added capability to simulate them.
Parallelism occurs at the factory level (i.e., each factory
is a parallel, asynchronous simulation infrastructure) [9].
Parallel simulations are performed by using components
(or simulation objects) from different factories. A WESE
factory is built from subfactories and object stubs. Object
stubs contain attributes of the a component such as inter-
face description, cost, and formal specifications.

5.2.1 WARPED

The simulation subsystem of a WESE factory has been de-
veloped using the WARPED simulation kernel. WARPED
is an API for a general-purpose discrete event simulation
kernel with different implementations [36]. WESE uses
the time warp–based [36] simulation kernel of WARPED.
A Time Warp synchronized simulation is organized as a
set of asynchronous logical processes (LPs) that represent
the different physical processes being modeled. The LPs
exchange event information by exchanging virtual time-
stamped event messages. Virtual time [37] is used to model
the passage of time and defines a total order on the events in

Volume 82, Number 4 SIMULATION 241

Rao and Wilsey

Information
Manager

Specification
Generator

SSL

DCSPPM
Module

Simulator

Simulator

Simulator

WESE

(PVS)

SSL−IF

Elaborator
SSL Parser &

Manager

Factory

System
Requirements

(User)

Factory Factory

Factory

HTML
(CGI)
Pages

Reports

Model

Text Interface

Interface
Front End/

WESE−FVF Server

Manager
Simulation

Generated Spec.

Theorem Prover

Client’s Browser

Legend

Sub−System
Communication

Web−Based Environment For Systems Engineering

Figure 3. Overview of WESE

the system. Each LP processes its events by incrementing
a local virtual time (LVT), changing its state, and generat-
ing new events. Although each LP processes local events
in their correct time stamp order, events are not globally
ordered.

Causality violations are detected when an event with
time stamps lower than the current LVT (a straggler) is
received. On receiving a straggler event, a rollback mech-
anism is invoked to recover from the causality error. The
rollback process recovers the LP’s state prior to the causal
violation, canceling the erroneous output events generated
and reprocessing the events in their correct causal order.
Each LP maintains a queue of state transitions along with
lists of input and output events corresponding to each state
to enable the recovery process. A periodic garbage collec-
tion technique based on global virtual time (GVT) is used
to prune the queues by discarding history items that are
no longer needed. The distributed simulation is deemed
to have terminated when all the events in the system have
been processed in their correct causal order. A more de-
tailed description of WARPED, Time Warp, and WESE are
available in the literature [36, 38].

5.3 Infrastructure for DCS

The modeling and simulation subsystems of WESE pro-
vide the infrastructure for enabling both proactive and re-
active DCS. SSL includes the necessary language con-
structs for modeling, the factories provide infrastructure

for component development, and the simulation subsys-
tem performs the core tasks involved in enabling DCS. In
WESE, an event-driven mechanism has been employed to
sequence the various phases involved in DCS [39]. This
approach makes the DCS implementation immune to the
idiosyncrasy of the synchronization mechanism.A compo-
nent can trigger DCS by merely scheduling an appropriate
kernel event. The DCS infrastructure of WESE provides
support for both proactive and reactive transformations.
Proactive DCS transformations occur in the future with re-
spect to simulation time. Such transformations have been
enabled by using the standard simulation infrastructure
of WARPED. Special kernel events are scheduled to trig-
ger proactive transformations. WESE provides API calls to
schedule proactive DCS transformations to occur in the
future. On the other hand, enabling reactive DCS transfor-
mations is more involved.

In WESE, reactive DCS has been enabled by using the
built-in state-saving and rollback mechanism provided by
the Time Warp kernel of WARPED. Reactive DCS transfor-
mations are achieved by artificially rolling back the sim-
ulation to an earlier simulation time (i.e., earlier than the
time when the transformation needs to occur) and then
performing the DCS transformation. The overheads of roll-
backs and causal consistency maintenance are transparent
to the application. To enable reactive DCS, the state of the
simulation at the desired time needs to be available. To en-
sure that the states are available, WESE provides suitable
API calls that can be used to delay fossil collection in the

242 SIMULATION Volume 82, Number 4

ACCELERATING ATM SIMULATIONS USING DCS

simulations. Care must be taken to ensure that an optimal
value is specified so that the memory usage of the simu-
lation does not significantly increase. The delayed fossil
collection can be enabled and disabled by the application
during the course of the simulation. In addition, WESE also
provides an API and infrastructure for mapping states of
components during DCS.

5.3.1 Error Propagation Library (EPL)

WESE also includes a lightweight Error Propagation Li-
brary (EPL) that provides a set of statistical functions that
can be used to track and propagate errors in simulation
results that may arise due to DCS transformations. In con-
junction with WESE, it has been developed in C++. The
object-oriented features of C++ have been used to seam-
lessly integrate EPL with the modeling and simulation in-
frastructure of WESE. For each basic numeric data type in
C++ (such asint,float, and double), the EPL defines
a corresponding data type (such asINT,FLOAT, and DOU-
BLE). Each EPL data type maintains the numerical data in
the form x ± ∆x, where x is the default value (that would
be maintained if EPL is not used), and ±∆x represents the
error or uncertainty in the value of x [40, 41]. EPL pro-
vides a number of statistical functions that can be used to
determine the uncertainty or errors. In addition, operator
overloading has been used to define suitable mathematical
operators for the EPL values. The operators suitably propa-
gate the uncertainties across mathematical operations. The
EPL values can be seamlessly used in simulation events,
and they automatically propagate uncertainties through the
model. Careful use of EPL can significantly increase con-
fidence in the results obtained from simulations without
significantly affecting overall simulation performance.

6. ATM Factory: Set of ATM Components

As explained in section 5, models are developed by collat-
ing a set of components into a WESE factory and using SSL
to develop the models by suitably interconnecting compo-
nents. This approach is commonly used in other simula-
tion environments as it provides flexibility and increases
reusability of components. A set of typical ATM network-
ing components has been developed and bundled into an
ATMFactory. The components have been developed to
provide sufficient flexibility so that their working can be
fine-tuned using suitable parameters (in the SSL descrip-
tion). Care has been taken to ensure that the overall organi-
zation of the model and components closely reflects their
real-world counterparts.

TheATMFactoryprovides aPMLayer andTCLayer
component that are used to model the physical layer of an
ATM switch (Fig. 2). The PMLayer component must be
used to send and receive data between any two nodes in the
simulated ATM network. In addition to transmitting and
receiving data, this layer also provides primitives for la-
tency detection and bandwidth negotiations between ATM

switches. The TCLayer component models the transmis-
sion convergence sublayer. It generates suitable header er-
ror correction (HEC) for the incoming and outgoing ATM
cells and performs necessary validation. This component
forms the link between an ATM layer component and a PM
component within an ATM switch.

The ATM layer is the core of an ATM switch and per-
forms a diverse set of functions. Consequently, the ATM
layer component has been modeled using a set of C++
classes with suitable APIs. The idea is to provide a flexi-
ble and extensible infrastructure for further development.
The set of components constituting the ATM layer (AL)
performs the following diverse functions:

1. PNNI-Related Functions: The AL component han-
dles all the signals and activities related to the PNNI
of ATM networks. Currently, point-to-multipoint
call and connection controls are not supported. Call
creation includes parameters for specifying the de-
sired bandwidth, latency, and jitter. This component
also performs the tasks related to PNNI-based rout-
ing such as route discovery and routing table dis-
tributions. The AL component supports a weighted
shortest path routing mechanism for route discov-
ery, where weights are computed based on the band-
width of the links. TheAL component indirectly uses
the PM component to negotiate and determine band-
width of the links. Routes are periodically refreshed
to check and recover from link failures.

2. VCI/VPI Translation: The AL component maintains
a table of active VCI and VPI at each ATM switch.
The AL component translates and multiplexes each
ATM cell from one VCI to another using an activity
indicator for each VCI. The AL chooses a suitable
time slot for transmitting a cell based on the traffic
contract for a VPI. Remaining cells are rescheduled
to be transmitted at a later simulation time. This ap-
proach is a trade-off between the amount of memory
required for maintaining large ATM memory buffers
versus rescheduling overheads.

In addition to the above components, the ATMFactory
also provides traffic generators that can be configured as
servers or clients. The clients also include a suitable ab-
straction of the ATM adaptation layer (AAL). The traf-
fic generators provide parameters for configuring the type,
volume, and rate at which they generate ATM cells along
with sources and destinations (specified as 64-bit hierar-
chical ATM addresses). The generators provide statisti-
cal distributions and a Markov-modulated Poisson process
(MMPP)–based mechanism for generating ATM traffic.

6.1 ATM Cloud

The ATM Cloud (AC) represents a higher level abstrac-
tion (or lower resolution) of a set of interconnected ATM

Volume 82, Number 4 SIMULATION 243

Rao and Wilsey

(b) Simulation Configuration 2

Component
Client

Simulation Configuration #2

DCS

Component
Client

Ports

ATM Switch

ATM CloudSimulation Configuration #1

(a) Simulation Configuration 1

ATM Cloud

(Single Component or)
(Logical Process [LP])

Figure 4. Overview of implementation of dynamic component substitution (DCS) in asynchronous transfer mode (ATM) models

switches (see Fig. 4). The ATM Cloud is also an integral
part of the ATM Factory. The AC essentially represents
an ATM subnetwork. Multiplexing of cells within the AC
proceeds at a much faster rate because intermediate cells
are not generated. Instead, an incoming cell is directly mul-
tiplexed onto an outgoing link. However, it must be noted
that theAC does not perform any task (such as PNNI signal-
ing, etc.) other than multiplexing cells. TheAC multiplexes
cells, using a given set of VC tables. The VC tables are ob-
tained from various AL components encapsulated by an
AC. The VC table information stored in the state of each
AL component is passed to the corresponding AC when
proactive abstraction is triggered. The AC uses the VC ta-
ble information and updates its internal state during the
abstraction process. When a cell arrives at a port, the AC
uses the VC table corresponding to that port to determine
information about the next hop. If the next hop is to an AL
component within the AC, it looks up the appropriate VC
table for further multiplexing information. On the other
hand, if the next hop lies outside the AC, it generates a new
cell event with appropriate delays (computed as discussed
in the next paragraph) and schedules the event.

The AC component uses a more straightforward ap-
proach to determine cell delays when compared to the AL
components. The AL components strive to minimize jit-
ter by applying realistic cell multiplexing behaviors. On
the other hand, the AC simply uses the maximum accept-
able jitter value. The motivation for a more straightfor-
ward approach is to minimize state information in the AC.
To achieve realistic multiplexing behaviors, the AL com-
ponents maintain detailed cell transmission schedules for
each outgoing link in their state. The state information is
typically small because of the few number of links on each
AL. However, an AC contains several AL layers, and main-
taining detailed cell transmission schedules for each AL
significantly increases the state size and state-saving over-
heads. To minimize state overheads, theAC simply uses the

maximum acceptable jitter values for links encapsulated
by the AC and does not perform detailed cell scheduling
like theAL layers. Consequently, deviations in cell timings
may occur when cells are multiplexed by an AC compo-
nent rather than by an AL component. Note that the upper
bound for these deviations is the maximum jitter value for
a given VC. To validate the timings obtained from simula-
tions involving DCS, the AC sets a suitable variation (±n
microseconds) in timings along with the cell. The variances
are tracked and errors are propagated using WESE’s EPL
(section 5.3.1). The objective is to ensure that the jitter and
delays provided by the AC are comparable to that of the
ATM switches, thereby increasing the confidence in the
results obtained from simulations.

The AC component assumes that abstraction occurs
only when the traffic on various links is below a certain
threshold and all the traffic can be accommodated without
any cell loss. Currently, the threshold is set to 85% band-
width of the slowest link associated with an ATM cloud.
If the traffic exceeds 85% of the bandwidth, then it is as-
sumed that cell loss may occur and abstraction is inhibited,
thereby forcing high-resolution simulations. Accordingly,
theAC does not check for cell loss but reactively refines the
model when any traffic other than ATM cells are received.
Refer to section 7 for details on the DCS strategy used in
this study.

The AC multiplexes cells at a much faster rate than a set
of ATM switches. For example, consider a case shown in
Figure 4, in which four ATM switches are encapsulated
into an ATM Cloud. On a 2-GHz Athlon XP proces-
sor, the wall clock time to multiplex a cell through the
AC is about 4 (±0.25) microseconds, while multiplexing
the cells through four individual ATM switches (consisting
of AAL components, ATM components, TC components,
and PM components) takes 60 (±0.63) microseconds. In
other words, the AC component is faster than a set of ATM
switches by more than 10 times. The primary factor con-

244 SIMULATION Volume 82, Number 4

ACCELERATING ATM SIMULATIONS USING DCS

tributing to the performance improvement is the elimina-
tion of intermediate simulation events and corresponding
simulation overheads (such as event creation, scheduling,
and event processing) for multiplexing the cell across each
individual ATM switch.

In the proposed study, DCS is used to abstract and refine
a subnetwork by substituting a set of ATM switches (high-
resolution entities) with an ATM Cloud (low-resolution
entity). During DCS, the states of the various compo-
nents (such as AAL components, ATM components, and
PM components) are mapped to the corresponding ATM
Cloud component using suitable API methods. The state
mapping provides information about the active channels
(VPI, VCI, and traffic contract) along with other infor-
mation on each ATM switch. Note that the set of com-
ponents encapsulated by an ATM switch is automatically
determined (from the SSL description) and maintained by
WESE. In addition, WESE also handles the issues involved
in properly routing events between components when DCS
occurs.

7. Strategy for DCS

A brief overview of the proposed solution to accelerate
ATM network simulations using DCS was discussed in
section 1. Figure 4 presents an overview of the implemen-
tation. The proposed solution has been implemented in the
simulations as follows. As shown in Figure 4, the module
(set of components) undergoing DCS in an ATM network
model is an ATMCloud. The ATMCloud encapsulates a
number ATMSwitches. As shown in Figure 4, each ATM
Switch further encapsulates other components, depend-
ing on the number of physical connections to the switch.
DCS is performed by substituting a set of ATMSwitches
(Fig. 4(a)) with a corresponding ATMCloud (Fig. 4(b)) in
the following fashion:

• The simulation starts off at the highest resolution
(lowest level of abstraction). DCS is inhibited for
first few seconds (simulation time) of network ac-
tivity. DCS is inhibited because during the first few
seconds, the network remains in a nonquiescent con-
dition as traffic negotiations are performed, routes
between ATM switches are being established, and
the clients create new connections. The duration of
the startup phase depends on the size of the network.
Currently, the duration of the startup phase is speci-
fied by the model developer.

• Once the initial startup phase has been completed,
the ATMCloud periodically triggers proactive ab-
straction. Proactive abstraction is speculatively trig-
gered with the assumption that the network has
reached a stable condition. Furthermore, abstraction
of a subnet is inhibited when the traffic on the subnet
is high (more than 85% of a link’s bandwidth) and
the probability of cell loss is high. In addition, the ab-
stract ATMCound components assume that abstrac-

tion occurs only when links are not heavily loaded
and do not perform checks for cell loss.

• Whenever the ATMCloud receives an event other
than a ATMCell (say an ATMSignal), it triggers
a reactive refinement of the model. The simulation is
rolled back to the time when the event was generated.
The model is refined, and the simulation proceeds at
a higher resolution. The ATMCloud schedules itself
an event into the future to check and trigger proactive
abstractions. Note that the difference in simulation
times when an event is generated and when the same
event is received is determined by the delay of the
link on which the event logically traverses. Conse-
quently, the maximum rollback distance of an ATM
Cloud is the delay of the slowest link connected to
it.

However, to enable rollbacks, the simulator needs
to maintain one state prior to the rollback time [36].
Accordingly, to enable reactive refinement, the GVT
value is throttled by two times the slowest link asso-
ciated with any ATMCloud component in a model.
Throttling the GVT in turn delays fossil collection in
the simulation, thereby providing the necessary state
information needed for reactive refinement. Given
an upper bound on the reactive rollback distance and
corresponding throttle value for GVT, the simula-
tion will never roll back before GVT. Currently, it is
the modeler’s responsibility to determine the slowest
link and specify that value in the model description.

• Due to the type of multiplexing adopted in the imple-
mentation, the ATMLayer may receive ATMSig-
nals while the model is in its abstract state. In such
cases, the ATMlayer component triggers a reac-
tive refinement so that the signals can be processed
correctly.

As required by WESE’s API, the various components
override the serialize and deSerializeAPI meth-
ods to map the current state of the various components.
When abstraction occurs, eachATMLayer component dis-
patches its connection table and activity indicators to the
enclosing ATMCloud. On the other hand, when refine-
ment occurs, theATMClouddispatches the activity indica-
tors to corresponding underlyingATMLayer components.
Since the ATMCloud does not process signals, it cannot
induce any change in the connection tables. Consequently,
the ATMCloud does not redistribute the connection tables
and avoids unnecessary state-mapping overheads. SSL’s
elaboration module and WESE’s API provide the necessary
information for achieving the mapping efficiently.

8. Experiments

The experiments conducted to evaluate the effectiveness
of applying DCS to ATM network simulations were con-
ducted using a set ofATM network models. The basicATM

Volume 82, Number 4 SIMULATION 245

Rao and Wilsey

(* SSL description of an ATMSwitch module *)
ATMSwitch2(2, 2) {
ComponentDefinitions {

(* This section defines the type of
components used in the ATM Switch *)

ATMLayer(2, 2) : localhost:2022.ATMFactory.ATMLayer
"--ports 2" others;

TCLayer(2, 2) : localhost:2022.ATMFactory.TCLayer;
PMLayer(2, 2) : localhost:2022.ATMFactory.PMLayer

"--inport 2" others;
}
ComponentInstantiations {

(* Component Instantiation Section *)
atm : ATMLayer;
tc1 : TCLayer; tc2 : TCLayer;
pm1 : PMLayer "--atm-port-id 1 --bandwidth 155.52";
pm2 : PMLayer "--atm-port-id 2 --bandwidth 155.52";

}
Netlists {

tc1(OUT, 1) : atm(IN, 1); atm(OUT, 1) : tc1(IN, 1);
pm1(OUT, 1) : tc1(IN, 2);tc1(OUT, 2) : pm1(IN, 1);
pm1(IN, 2) : ATMSwitch2(IN, 1);
pm1(OUT, 2): ATMSwitch2(OUT, 1);
tc2(OUT, 1) : atm(IN, 2); atm(OUT, 2) : tc2(IN, 1);
pm2(OUT, 1) : tc2(IN, 2); tc2(OUT, 2) : pm2(IN, 1);
pm2(IN, 2) : ATMSwitch2(IN, 2);
pm2(OUT, 2): ATMSwitch2(OUT, 2);

}
}

(a) ATM Switch module

(* SSL description of an ATM sub-network *)
(* with 3 switches. *)

ATMSubNet(2, 2) : localhost:2022.ATMFactory.ATMCloud
"--ports 2 --switches 3 --dcs-start-time 220000 "
"--gvt-delay 13.75" others {
ComponentDefinitions {

(* We don’t have any component definitions here. *)
}

ComponentInstantiations {
switch1 : ATMSwitch2 "--address-1 0.0.0.0.0.0" others;
switch11: ATMSwitch2 "--address-1 0.0.0.0.0.1" others;
switch12: ATMSwitch2 "--address-1 0.0.0.0.0.2" others;

}

Netlists {
switch11(OUT, 1): switch1(IN, 1);
switch1(OUT, 1) : switch11(IN, 1);
switch11(OUT, 2) : ATMSubNet(OUT, 1);
switch11(IN, 2) : ATMSubNet(IN, 1);
switch12(OUT, 1) : switch1(IN, 2);
switch1(OUT, 2) : switch12(IN, 1);
switch12(OUT, 2) : ATMSubNet(OUT, 2);
switch12(IN, 2) : ATMSubNet(IN, 2);

}
}

(b) ATM Cloud module

Figure 5. Hierarchical System Specification Language (SSL) description for an asynchronous transfer mode (ATM) network model.
(a) ATM switch module. (b) ATM cloud module.

components available in theATMFactory have been used
in a hierarchical manner to develop the network models.
The basic modules in the network models areATMSwitch
and ATMClient. Figure 5(a) presents the SSL descrip-
tion for an ATMSwitchwith two ports. Each input-output
port pair is indirectly connected to a single ATMLayer
component via a PMLayer component and a TCLayer
component. The PMLayer components form the primary
input and output components of the ATMSwitchmodule.
Suitable parameters are provided to the various compo-
nents. In addition, as shown in Figure 5, SSL’s “others”
clause has been used to pass in hierarchical parameters
(such as ATM addresses, etc.) from higher level module
instantiations down to the final component instantiations.

In the next hierarchical level, a set of ATMSwitch
modules is suitably interconnected to form a subnetwork,
as shown in Figure 5(b). The subnetwork is the higher
resolution equivalent of an ATMCloud. Accordingly, as
shown in Figure 5, suitable equivalent component speci-
fications are provided for the subnetwork modules using
an ATMCloud component. The parameters necessary to
customize the working of the ATMCloud are also pro-
vided. For instance, the delay in GVT to throttle fossil col-
lection to enable reactive rollbacks is specified using the
--gvt-delay parameter. The value for GVT delay is de-
termined based on the fact that the slowest link to the cloud
is a 64-MBPS link. That implies that an 55-octet ATM cell
will have a delay of (55 ∗ 8)/(64 ∗ 106) = 6.875 µsec
on this link. In other words, an ATMCloud component
would have to roll back 6.875 µsec in simulation time
when reactive refinements occur. However, as discussed in

section 6.1, the simulator needs to maintain one state prior
to the rollback time to enable rollbacks [36]. Based on this
information, the GVT delay for this model has been set to
6.875 ∗ 2 = 13.75 µsec. Using a similar procedure, ATM
network models have been developed to empirically evalu-
ate the effectiveness of the proposed approach. The salient
characteristics of the models are shown in Table 1.

The vBNS+ example shown in Table 1 is a model
of the very high-performance Backbone Network Service
(vBNS+) that has been under development since 1995 [42].
The network topology of vBNS+ is shown in Figure 6. It
now provides a nationwide, high-performance ATM back-
bone for IP over ATM-type applications that require high-
performance and high-bandwidth networking. vBNS+ has
been developed through a cooperative agreement between
MCI and the National Science Foundation (NSF). The pri-
mary traffic on the vBNS+ backbone is IP over ATM gen-
erated by edge IP routers connected to an ATM switch.
The edge routers are modeled using an ATMIPClient
from the ATMFactory. Based on some of the statistics
available off the Internet, the clients were programmed to
choose a random destination, establish connections to it,
download a few megabytes of data, and close the connec-
tion. Each client typically has four to eight concurrent con-
nections open. This scheme reflects the “typical” behavior
of an edge router in the vBNS+ backbone. Care was taken
to appropriately seed the random number generators so that
the experiments were repeatable. The vBNS+ model also
includes an Address Resolution Protocol (ARP) service. It
has been developed to resolve IP address toATM addresses
for this application. The ARP tables are manually provided

246 SIMULATION Volume 82, Number 4

ACCELERATING ATM SIMULATIONS USING DCS

Table 1. Characteristics of the ATM models

Model Number of Components Hierarchies
Name Normal Abstract Total in Model

vBNS+ 241 4 245 4
ATMNet1 1495 27 1522 5
ATMNet2 1495 27 1522 5

J

C

C

C

J

C

A C

C

C A
C

C

C

A

C

C

C

C

C

C

A

C

A

C

C

J

C

C

Seattle

Los Angeles

San Diego

San Francisco
Denver

Chicago

Ameritech
NAP

Houston

Atlanta

NCSA

Boston

Cleveland

York
New

MFS NAP

Pittsburgh

Washington
DC

NAP

Sprint

Perryman

− Ascent GRF 400

− Cisco 7507

− Cisco 12008

− Juniper M40

− Fore ASX−1000

− NAP

− OC−3C

− OC−12C

− DS−3

C

ATM Clouds

Figure 6. Topology of vBNS+ model

(through a data file), and the ARP service uses these data
for resolving addresses.

The vBNS+ model has been developed in a hierarchi-
cal fashion by describing the network topology in SSL.
As indicated in the column titled “Hierarchies in Model”
in Table 1, the vBNS+ model contains four hierarchical
levels. The top-most hierarchical level consists of a set of
edge routers connected to four ATM clouds. Figure 6 illus-
trates the four clouds. The clouds have been defined based
on their geographic locations. The four ATM clouds form
the next tier in the hierarchical model. Each cloud has a
corresponding ATMCloud component associated with it.
The number of such abstract ATMCloud components in

each model is tabulated in Table 1, in the column titled “Ab-
stract.” Each cloud encapsulates a set ofATM switches and
links that constitute the third hierarchical level. Each ATM
switch in turn consists of one ATMLayer component and
several TCLayer and PMLayer components that consti-
tute the lowest level in the hierarchy.

The number of these atomic components, along with
traffic generators and clients in each model, is shown in
the column titled “Normal” in Table 1. Note that, as il-
lustrated in Figure 6, each ATMCloud encapsulates a dif-
ferent number of ATM switches. At any given point in
the simulation, zero or more of the ATMCloud compo-
nents are active, and the components encapsulated by it

Volume 82, Number 4 SIMULATION 247

Rao and Wilsey

are inactive (or vice versa) due to DCS transformations.
Accordingly, as the number of active ATMCloud compo-
nents increases, the total number of active components in
the simulation decreases. The clients and traffic generators
in the model are always active and are not affected due to
DCS transformations. Note that ATMCloud components
cannot be nested within each other.

The ATMNet1 model has been developed by suitably
adapting an ATM network model developed by Perumalla
and Fujimoto [43] at Georgia Tech. The model has also
been used by other researchers for study and analysis of
ATM networks [34]. The traffic in this example is pure
ATM-type traffic generated by the clients. The clients gen-
erate a constant bit rate–type traffic (typical to voiceover
ATM/Sonet-type applications) with some acceptable (pre-
specified) jitter [1]. Each client has only one connection
active at a time. A client chooses a random destination,
establishes connection with the destination, exchanges a
number of cells (1 to 10 MB), and closes the connection.
Such connection models are used by other researchers as
well [44]. As shown in Table 1, this model had an addi-
tional hierarchical level for clients as it eases reuse of client
module definitions.

The ATMNet2 example is a modified version of the
earlier ATMNet1 example. The primary difference be-
tween the two models is that the ATMNet1model has pure
ATM-type clients while the ATMNet2 example has a mix-
ture of pure ATM clients and IP over ATM-type clients.
In addition, the speed of the communication links be-
tween the clients and the immediate switches was changed
from OC3-type connections to ADSL-type links. The ob-
jective was to simulate an ATM over ADSL-type sce-
nario. The core of the network continued to have OC3-type
connections.

TheATM network models have been used to empirically
evaluate the effectiveness of the proposed approach. The
experiments were conducted using a set of workstations
networked using 1000-MBPS Ethernet. Each workstation
consisted of 2 Athlon MP processors (2.0 GHz compara-
ble) with 1 GB of main memory running Linux. Note that
only one of the two processors on each workstation was
used. In parallel simulations, the components were orga-
nized such that the clients connected to an ATM switch
were preferably placed on the same workstation to reduce
communication overheads.

The change in connections and corresponding DCS
transformations that occur in the vBNS+, ATMNet1, and
ATMNet2 models is shown in Figures 7, 8, and 9, respec-
tively. The number of active connections changes when-
ever a client creates or closes a connection in the network.
Initially, the number of connections significantly increases
as all the clients create connections. Similarly, the num-
ber of connections decreases back to zero at the end of
the simulation as the clients close connections. Changes in
connections introduce nonquiescent conditions in the net-
works. Correspondingly, DCS transformations (shown in
Figure 7(b), Figure 8(b), and Figure 9(b)) occur to track

the nonquiescent conditions in the network. More specif-
ically, when a subnet is in the quiescent condition, proac-
tive DCS-based abstraction is triggered and a given ATM
Cloud component becomes active. All components en-
capsulated by the ATM- Cloud are deactivated, thereby
reducing the total number of active components in the
model. As the number of active ATMCloud components
increases, the total number of active components in the
model decreases. Conversely, in nonquiescent conditions,
reactive refinement causes the number of active compo-
nents to increase. These trends are illustrated by the graphs
shown in Figure 7(b), Figure 8(b), and Figure 9(b).

As illustrated by the DCS trends, the network remains
in the quiescent condition only for a short period of time.
In the models, a change in connections occurs approxi-
mately every 5 to 10 milliseconds of simulation time. As
illustrated by the graphs in Figure 7(b), 8(b), and 9(b),
the models undergo rapid sequences of abstractions and
refinements approximately every 5 milliseconds of sim-
ulation time. Such a dynamic model has been chosen to
stress test the proposed approach. The proposed approach
attempts to exploit the quiescent periods (of say 5 mil-
liseconds) in which several cells are exchanged (average
cell transmission time is about 5 microseconds) to accel-
erate the simulation. In these models, the small quiescent
periods are exploited to accelerate the simulation.

A comparison between the wall clock time for simu-
lating the models with and without DCS is shown in Fig-
ure 10. Note that the EPL was used only in simulations
involving DCS; it was compiled out in simulations without
DCS. The data plotted in Figure 10 are the averages com-
puted from 10 simulation runs. As shown by the graphs,
the simulations with DCS run considerably faster than the
non-DCS simulations. The primary source of performance
improvement is the elimination of a number of intermedi-
ate events between the ATM switches in an ATM cloud.
The reduction in the number of intermediate events re-
duces scheduling overheads, processing time, communica-
tion bottlenecks, and synchronization cost. Consequently,
simulation involving DCS runs faster. It must be noted that,
although the ATMCloud has a theoretical maximum per-
formance improvement of 10×, the need to simulate other
components in the model (such as clients and traffic gen-
erators) mitigates the overall performance improvements.
Furthermore, some of the performance is lost in enabling
and triggering DCS transformations.

As shown in Figure 10(a) and Figure 10(c), the wall
clock time for simulation increases as the number of pro-
cessors is increased. The increase in time is due to commu-
nication overheads in conjunction with the number of roll-
backs that occur in parallel simulations. Since the time for
simulation steadily increased, the simulations using more
than four processors were not performed. However, in the
ATMNet1 model, simulations conducted using two CPUs
performed better than the one-CPU case. This configura-
tion was favorable for parallel simulation as it provided an
ideal compromise between parallelism and communication

248 SIMULATION Volume 82, Number 4

ACCELERATING ATM SIMULATIONS USING DCS

0

10

20

30

40

50

60

70

0 20 40 60 80 100

N
um

be
r

of
 a

ct
iv

e
co

nn
ec

tio
ns

Simulation Time (seconds)

Connection Count

(a) Active Connections

60

80

100

120

140

160

180

200

220

240

0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 a

ct
iv

e
co

m
po

ne
nt

s

Simulation Time (seconds)

#Active Components

(b) DCS transformations

Figure 7. Connection trends and dynamic component substitution (DCS) transformations in the vBNS+ model. (a) Active
connections. (b) DCS transformations.

0

10

20

30

40

50

60

70

0 50 100 150 200

C
ha

ng
es

 in
 c

on
ne

ct
io

ns

Simulation Time (seconds)

Connection Changes

(a) Active Connections

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200

N
um

be
r

of
 a

ct
iv

e
co

m
po

ne
nt

s

Simulation Time (seconds)

#Active Components

(b) DCS transformations

Figure 8. Connection trends and dynamic component substitution (DCS) transformations in the ATMNet1 model. (a) Active
connections. (b) DCS transformations.

overheads. However, as shown in Figure 10(b), the per-
formance decreases as additional CPUs are used because
of an increase in communication and synchronization
overheads.

The primary reason for decreased parallel simulation
performance is primarily due to the relatively small size
of the models. Note that although the models are realistic,
they are still small for parallel simulation due to the high
computation to communication ratio. When the model is
partitioned across several processors, there is insufficient
load to effectively use the CPUs. In other words, the over-

heads of parallel simulation offset the gains, and the per-
formance of the simulations decreases. The graphs in Fig-
ure 11 present a comparison between the memory usage
of the simulations with and without DCS. As shown by the
graphs in the figure, the DCS simulations consume more
memory than the simulations without DCS. The increase
in memory usage is due to the delayed fossil collection re-
quired for enabling reactive DCS transformations (as de-
scribed in section 7). As illustrated by the experiments,
although DCS simulations consume more memory, they
run much faster than the non-DCS simulations.

Volume 82, Number 4 SIMULATION 249

Rao and Wilsey

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

#A
ct

iv
e

co
nn

ec
tio

ns

Simulation Time (seconds)

#Connections

(a) Active Connections

250

300

350

400

450

0 5 10 15 20 25 30

N
um

be
r

of
 a

ct
iv

e
co

m
po

ne
nt

s

Simulation Time (seconds)

#Active Components

(b) DCS transformations

Figure 9. Connection trends and dynamic component substitution (DCS) transformations in ATMNet2 model. (a) Active connections.
(b) DCS transformations.

0

5000

10000

15000

20000

25000

30000

35000

0 1 2 3 4 5

S
im

ul
at

io
n

T
im

e
(s

ec
on

ds
)

Number of processors

No DCS
DCS

(a) vBNS+

20000

30000

40000

50000

60000

0 1 2 3 4 5

S
im

ul
at

io
n

T
im

e
(s

ec
on

ds
)

Number of processors

No DCS
DCS

(b) ATMNet1

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 3 4 5

S
im

ul
at

io
n

T
im

e
(s

ec
on

ds
)

Number of processors

No DCS
DCS

(c) ATMNet2

Figure 10. Comparison of wall clock time for simulation with and without dynamic component substitution (DCS). (a)vBNS+.
(b) ATMNet1. (c) ATMNet2.

250 SIMULATION Volume 82, Number 4

ACCELERATING ATM SIMULATIONS USING DCS

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5

P
ea

k
m

em
or

y
us

ed
 (

in
 M

eg
a

B
yt

es
)

Number of processors

No DCS
DCS

(a) vBNS+

50

100

150

200

250

300

0 1 2 3 4 5

P
ea

k
m

em
or

y
us

ed
 (

in
 M

eg
a

B
yt

es
)

Number of processors

No DCS
DCS

(b) ATMNet1

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5

P
ea

k
m

em
or

y
us

ed
 (

in
 M

eg
a

B
yt

es
)

Number of processors

No DCS
DCS

(c) ATMNet2

Figure 11. Comparison of peak memory consumption with and without dynamic component substitution (DCS). (a)vBNS+.
(b) ATMNet1. (c) ATMNet2.

8.1 Model Validation

In all of the ATM network models, the clients in the model
report connection statistics at the end of simulation. The
connection statistics include the following information:
(1) total number of cells sent, (2) total number of cells
received, (3) average transmission delay observed per con-
nection, and (4) average jitter observed. The data from sim-
ulations without DCS are used as the reference values. The
connection statistics from simulations with and without
DCS are compared to ensure that they meet the following
conditions: (1) the total number of cells sent and received
in both version of each simulation must be exactly equal,
(2) the average delays must be within reported limits, and
(3) the reported jitter must be within reported limits.

The last two comparisons are performed in a statistical
manner. As described in section 6.1, slight deviations in
the cell multiplexing timing exist between the ATMLayer
and the ATMCloud. Therefore, the ATMCloud uses the
EPL to propagate the variance in mean delay and jitter
from source to sink for each cell. Consequently, in the case
of DCS simulations, the mean delay and jitter values are
reported as a range (i.e., mean value ± variance). On the
other hand, in simulations without DCS, the EPL is not
used (it is actually compiled out to avoid any simulation
overheads), and the statistics reported are just mean val-
ues. It was observed that the reference values lie within
the range reported by simulation with DCS and are suffi-

ciently close (±2%) to the mean value. Thus, the data from
the two flavors of simulations were verified and validated
to be consistent with each other.

9. Conclusions

This article presented an alternative approach to accelerat-
ing simulation of ATM networks to scenarios of interest in
order to reduce the overall wall clock time for simulation.
More specifically, the article discussed the issues involved
in applying a novel methodology called dynamic compo-
nent substitution (DCS) to improve the overall efficiency
of simulation studies by reducing the time spent in simu-
lating inconsequential states of the system. Proactive and
reactive techniques for triggering DCS in the model were
discussed, and the trade-offs between the two techniques
were illustrated. The statistics collated from the experi-
ments conducted to evaluate the effectiveness of the pro-
posed techniques were discussed. The experiments indi-
cate that although DCS simulations consume more mem-
ory, they enable significant improvements in the perfor-
mance of simulations. Furthermore, the results obtained
from the simulations have negligible skew.

DCS can be applied to any simulation in which only cer-
tain scenarios (such as heavy traffic, congestion, cell loss,
etc.) are of interest and detailed simulation of other scenar-
ios is not necessary. In this context, DCS can be effectively

Volume 82, Number 4 SIMULATION 251

Rao and Wilsey

applied to accelerate rare event simulations. Scenarios in
which rare events occur can be simulated in detail, while
remainder of the simulation can be performed using low-
resolution models. DCS can also be used in simulations
involving a moving target (i.e., the focus of the simulation
study dynamically changes from one part of the model to
another). DCS presents several new opportunities to further
improve the overall efficiency and performance of ATM
network simulations, and it can be applied to other do-
mains as well.

10. Acknowledgments

Support for this work was provided in part by the Ohio
Board of Regents.

11. References

[1] Bannister, J., P. Mather, and S. Coope. 2004. Convergence tech-
nologies for 3G networks: IP, UMTS, EGPRS, and ATM. New
York: John Wiley.

[2] Perros, H. G. 2005. Connection-oriented networks: SONET/SDH,
ATM, MPLS and optical networks. New York: John Wiley.

[3] AT&T Asia Pacific. 2005. Fact sheet. http://www.ap.att.com/
resource/media_fact_eng.jsp

[4] Marescaux, J., J. Leroy, F. Rubino, M. Smith, M. Vix, M. Simone,
and D. Mutter. 2002. Transcontinental robot-assisted remote
telesurgery: Feasibility and potential applications. Annals of
Surgery 235 (4): 487-92.

[5] Noel, E., and K. W. Tang. 2004. Performance analysis of a voip
access architecture. In 2004 International Conference on Par-
allel Processing Workshops (ICPPW’04), August, pp. 282-90.

[6] Rao, D. M. 2003. Study of dynamic component substitution. PhD
diss., University of Cincinnati.

[7] Heegaard, P. E. 1995. Speed-up techniques for simulation. Telek-
tronikk 2-3:195-207.

[8] Heegaard, P. E., B. E. Helvik, and R. Andreassen. 2005. Applica-
tion of rare event techniques to trace driven simulation. In Pro-
ceedings of the 2005Winter Simulation Conference (WSC’05),
December.

[9] Rao, D. M., V. Chernyakhovsky, and P. A. Wilsey. 2000. WESE:
A Web-based environment for systems engineering. In 2000
International Conference on Web-Based Modelling & Simu-
lation (WebSim’2000), January.

[10] ATM forum addressing: Reference guide. 1999. ftp://ftp.
atmforum.com/

[11] Rao, D. M., R. Radhakrishnan, and P. A. Wilsey. Forthcoming.
Web-based network analysis and design. ACM Transactions
on Modeling and Computer Simulation.

[12] Huang, P., D. Estrin, and J. Heidemann. 1998. Enabling large-
scale simulations: Selective abstraction approach to the study
of multicast protocols. In Proceedings of International Sym-
posium on Modeling, Analysis and Simulation of Computer
and Telecommunication Networks, October.

[13] McBrayer, T., and P. A. Wilsey. 1995. Process combination
to increase event granularity in parallel logic simulation.
In 9th International Parallel Processing Symposium, April,
pp. 572-8.

[14] Rao, D. M., and P. A. Wilsey. 2005. Accelerating spatially ex-
plicit simulations of spread of Lyme disease. In Proceedings
of the 38th Annual Simulation Symposium, April, San Diego,
pp. 251-58.

[15] Rao, D. M., and P. A. Wilsey. 2000. Dynamic component sub-
stitution in Web-based simulation. In Proceedings of the 2000
Winter Simulation Conference (WSC’2000), December.

[16] Reynolds, P. F., A. Natrajan, and S. Srinivasan. 1997. Consis-
tency maintenance in multiresolution simulation. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS)
7 (3): 386-92.

[17] Rao, D. M., P. A. Wilsey, and H. W. Carter. 2001. Optimizing
costs of Web-based modeling and simulation. In Proceedings
of the First International Workshop on Internet Computing
and E-Commerce (ICEC’01), April.

[18] Tremblay, J. P., and R. Manhohar. 1975. Discrete mathematical
structures with applications to computer science. New York:
McGraw-Hill.

[19] Rao, D. M., and P. A. Wilsey. 2006. Predicting performance
of resolution changes in parallel simulations. In Proceedings
of the 20th Workshop on Parallel and Distributed Simulation
(PADS’06), May, Singapore.

[20] Rao, D. M., and P. A. Wilsey. 2002. Performance prediction of
dynamic component substitutions. In Proceedings of the 2002
Winter Simulation Conference (WSC’02), December.

[21] Ahn, J., and P. B. Danzig. 1996. Speedup vs. simulation granu-
larity. IEEE/ACM Transactions on Networking 4 (5): 743-57.

[22] Schwetman, H. D. 1979. Hybrid simulation models of computer
systems. Communications of the ACM 21 (9): 718-23.

[23] Davis, P. K., and R. J. Hillestad. 1993. Families of models that
cross levels of resolution: Issues for design, calibration and
management. In Proceedings of the 1993 Winter Simulation
Conference.

[24] Lee, K. S., and P. A. Fishwick. 1996. Dynamic model abstrac-
tion. In Proceedings of the 1996 Winter Simulation Confer-
ence, December, pp. 764-71.

[25] Natrajan, A., P. F. Reynolds, and S. Srinivasan. 1997. MRE: A
flexible approach to multi-resolution modeling. In Proceed-
ings of the 11th Workshop on Parallel and Distributed Simu-
lation (PADS’97), June, pp. 156-63.

[26] Ammar, H. H., and S. Deng. 1992. Time Warp simulation using
time scale decomposition. ACM Transactions on Modeling
and Computer Simulation (TOMACS) 2 (2): 158-77.

[27] Schormans, J. A., E. Liu, L. G. Cuthbert, and J. M. Pitts. 2001. A
hybrid technique for accelerated simulation of ATM networks
and network elements. ACM Transactions on Modeling and
Computer Simulation (TOMACS) 11 (2): 182-205.

[28] Yan, G. 2005. Improving large-scale network traffic simulation
with multi-resolution models. PhD diss., Dartmouth College,
Hanover, NH. http://www.ists.dartmouth.edu/library/160.pdf

[29] Villén-Altamirano, J. 2002. Optimality and robustness of
restart simulations. In Fourth Workshop on Rare Event Sim-
ulation and Related Combinatorial Optimization Problems
(RESIM/COP’02).

[30] Gorg, C., and F. Schreiber. 1996. The restart/LRE method for
rare event simulation. In Proceedings of the 1996 Winter Sim-
ulation Conference, December, Coronado, CA, pp. 390-7.

[31] Kuhlmann, T., and C. Kelling. 1998. Case studies on multidi-
mensional restart simulations. International Journal of Elec-
tronics and Communications 52:190-6.

[32] L’Ecuyer, P., and Y. Champoux. 1996. Importance sampling for
large ATM-type queueing networks. In Proceedings of the
28th Winter Simulation Conference (WSC’96), pp. 309-16.
New York: ACM Press.

[33] Lamers, E., and C. Gorg. 2002. Rare event simulation on a net-
work of workstations. In Fourth Workshop on Rare Event Sim-
ulation and Related Combinatorial Optimization Problems
(RESIM/COP’02).

[34] Bhatt, S., R. Fujimoto, A. Ogielski, and K. Perumalla. 1998.

252 SIMULATION Volume 82, Number 4

ACCELERATING ATM SIMULATIONS USING DCS

Parallel simulation techniques for large-scale networks. IEEE
Communications Magazine 36 (8): 42-7.

[35] Pham, C. D., and S. Fdida. 1997. Perspectives in performance
evaluation of large ATM networks. In Proceedings of the 5th
IFIP Workshop on Performance Modelling and Evaluation of
ATM Networks, July, pp. 21-3.

[36] Radhakrishnan, R., D. E. Martin, M. Chetlur, D. M. Rao, and
P. A. Wilsey. 1998. An object-oriented Time Warp simula-
tion kernel. In Proceedings of the International Symposium
on Computing in Object- Oriented Parallel Environments
(ISCOPE’98), edited by D. Caromel, R. R. Oldehoeft, and
M. Tholburn, vol. LNCS 1505, 13-23. New York: Springer-
Verlag.

[37] Lamport, L. 1978. Time, clocks, and the ordering of events in a
distributed system. Communications of ACM 21 (7): 558-65.

[38] Jefferson, D. 1985.Virtual time. ACM Transactions on Program-
ming Languages and Systems 7 (3): 405-25.

[39] Rao, D. M., N. V. Thondugulam, R. Radhakrishnan, and P. A.
Wilsey. 1998. Unsynchronized parallel discrete event simula-
tion. In Proceedings of the 1998 Winter Simulation Confer-
ence, December, pp. 1563-70.

[40] Bevington, P. R., and D. K. Robinson. 2003. Data reduction
and error analysis for the physical sciences. 3rd ed. Boston:
McGraw-Hill.

[41] Taylor, J. R. 1997. An introduction to error analysis: The study
of uncertainties in physical measurements. 2nd ed. NewYork:
University Science Books.

[42] Advanced InternetArchitecture vBNS+. 2001.White paper,Ash-
burn, VA.

[43] Perumalla, K. S., and R. M. Fujimoto. 1998. Efficient large-
scale process-oriented parallel simulation. In Proceedings of
the 1998 Winter Simulation Conference (WSC’98), pp. 459-
66.

[44] Rueda, A., and W. Kinsner. 1996. A survey of traffic charac-
terization techniques in telecommunication networks. In Pro-
ceedings of the 1996 IEEE Canadian Conference on Electrical
and Computer Engineering, May, vol. 2, pp. 830-3.

Dhananjai M. Rao is currently a visiting faculty member in
the Computer Science & Systems Analysis (CSA) Department,
Miami University, Oxford, Ohio. He received his PhD and mas-
ter’s degrees in computer science and engineering from the Uni-
versity of Cincinnati in 2003 and 2000, respectively. His research
interests include parallel simulation, distributed computing, and
Web-based simulation. He research also includes applying sim-
ulations to various domains, such as digital logic simulations,
conventional and active networks, ATM networks, mobile ad hoc
networks, and epidemiology.

Philip A. Wilsey is a professor in the Department of Electrical &
Computer Engineering and Computer Science at the University
of Cincinnati. He received PhD and MS degrees in computer
science from the University of Louisiana at Lafayette and a BS
degree in mathematics from Illinois State University. His current
research interests are parallel and distributed processing, par-
allel discrete event–driven simulation, computer-aided design,
formal methods and design verification, and computer architec-
ture. He is a senior member of the IEEE and is a member of the
IEEE Computer Society and the ACM.

Volume 82, Number 4 SIMULATION 253

