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Abstract

The development of efficient parallel discrete event simulators is hampered by the large
number of interrelated factors affecting performance. This problem is made more difficult
by the lack of scalable representative models that can be used to analyze optimizations and
isolate bottlenecks. This paper proposes a performance and scalability analysis framework
(PSAF) for parallel discrete event simulators. PSAF is built on a platform-independent Work-
load Specification Language (WSL). WSL is a language that represents simulation models us-
ing a set of fundamental performance-critical parameters. For each simulator under study, a
WSL translator generates synthetic platform-specific simulation models that conform to the
performance and scalability characteristics specified by the WSL description. Moreover, sets
of portable simulation models that explore the effects of the different parameters, individually
or collectively, on the execution performance can easily be constructed using the Synthetic
Workload Generator (SWG). The SWG automatically generates simulation workloads with
different performance properties. In addition, PSAF supports the seamless integration of real
simulation models into the workload specification. Thus, a benchmark with both real and syn-
thetically generated models can be built allowing for realistic and thorough exploration of the
performance space. The utility of PSAF in determining the boundaries of performance and
scalability of simulation environments and models is demonstrated. © 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

The complexity of simulation models has rapidly exceeded the capabilities of to-
day’s sequential simulation platforms. Fundamental changes to traditional simula-
tion paradigms must be explored to enable the simulation of large models. One of
the most promising alternatives is Parallel Discrete Event Simulation (PDES) [17],
a simulation paradigm that capitalizes on the inherent parallelism present in physical
systems. In addition to the potential for improved performance, the resources intro-
duced by a parallel environment increase the capacity of the simulator. Unfortu-
nately, the benefits of parallel simulation have yet to be successfully realized. This
failure occurs because of two primary reasons: (i) parallel simulation is highly dy-
namic and unpredictable and consequently it is difficult to identify and characterize
bottlenecks and (ii) there is a shortage of portable, representative models written for
parallel simulation environments; it is difficult to evaluate the performance space of
new optimizations, and to isolate bottlenecks. Thus, the design, analysis and perfor-
mance tuning of parallel simulators has been done arbitrarily or based on a restricted
set of models (that vary by investigation).

This paper presents a performance and scalability analysis framework (PSAF) for
parallel discrete event simulators. PSAF uses a Workload Specification Language
(WSL) to describe a model in terms of its performance-critical factors. This plat-
form-independent representation can then be translated or ported (using a simula-
tor-specific translator) to different simulation environments. A WSL translator is
provided in order to simplify the task of building simulator-specific translators [3].
The translator is constructed using the Purdue Compiler Construction Tool Set
(PCCTS) and retargetting (or porting) ' the translator to different simulators in-
volves the modification of a small set of code generation routines. Thus, synthetic
workloads with tunable performance and scalability related parameters are gener-
ated. These workloads allow the performance and scalability of a simulator to be in-
vestigated under controlled conditions. The analysis is further aided by a Synthetic
Workload Generator (SWG) which is a program that automatically generates WSL
descriptions. The SWG can be used to generate scaled versions of the same WSL de-
scription to allow scalability analysis of a particular simulator. The portability of the
synthetic models afforded by the system allows unbiased and thorough comparison
of simulators.

The motivation for this work stems from the fact that there is a paucity of tools
that can be used to compare the scalability and performance of parallel discrete event
simulators. Thus, the goal of this work is to provide the simulation community with
a standard framework that simplifies the analysis of performance and scalability of
PDES simulators. Such an analysis allows a simulation system developer to under-
stand the intricacies of the performance related factors that affect the simulation sys-
tem, for different scales of the model. To that end, a benchmark suite with real

! When we say “retargetting” or “porting” we mean that the same simulation model can be executed on
different simulators provided a translator exists for each simulator.
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(explicitly ported) models, along with synthetic models generated by the SWG, serves
to provide the standard framework necessary for the analysis of the performance and
scalability aspects of PDES simulators. The aim of this paper is not to present a real
benchmark suite for PDES simulators but instead to present a framework that
allows users to easily develop a real benchmark suite for PDES simulators.

The remainder of this paper is organized as follows. Section 2 reviews PDES pro-
tocols. Section 3 discusses some related efforts in the performance analysis of PDES
simulators. Section 4 presents the performance and scalability analysis framework
and discusses its various components. Section 5 presents some experiments con-
ducted using PSAF to characterize our own parallel simulator; these experiments
provide examples of the different ways that the framework can be used. Section 6 de-
scribes the effort needed to retarget the framework to other simulators and presents
some comparisons of some PDES simulators. Section 7 investigates the success of
the synthetic models in replicating the behavior of their real-model counterparts.
Finally, Section 8 contains some concluding remarks.

2. Background

In this section, a brief overview of PDES [17] is presented. In PDES, the model to
be simulated is decomposed into physical processes that are modeled as simulation
objects. Each simulation object is assigned to a Logical Process (LP); the simulator
is composed of a set of LPs concurrently executing their simulation objects. Simula-
tion objects communicate by exchanging time-stamped messages through the LPs.
Thus, each LP (which can be associated with multiple simulation objects) receives
messages from other LPs and forwards them to the destination objects. In order
to maintain causality, LPs must process messages in strictly non-decreasing time-
stamp order [23,28]. There are two basic synchronization protocols used to ensure
that this condition is not violated: (i) conservative and (ii) optimistic. Conservative
protocols [7,10,31] strictly avoid causality errors, while optimistic protocols, such
as Time Warp [17,23] allow causality errors to occur, but implement some recovery
mechanism.

Conservative protocols were the first distributed simulation mechanisms. The ba-
sic problem conservative mechanisms must address is the determination of “safe”
events. In order to execute an event, the conservative process must first determine
that it is impossible for it to receive another event with a time-stamp lower that
the event it is currently trying to execute. If the process can independently guarantee
this, then the event is deemed to be safe and can be executed without the fear of a
causality violation. Processes containing no safe events must block; this can lead
to deadlock situations if no appropriate precautions are taken. Several studies on
conservative mechanisms and optimizations to conservative protocols have been pre-
sented in the literature [7,9,10,29,31].

In a Time Warp simulator, each LP operates as a distinct discrete event simulator,
maintaining input and output event lists, a state queue, and a local simulation time
(called Local Virtual Time or LVT). The state and output queue are present to
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support rollback processing. As each LP simulates asynchronously, it is possible for
an LP to receive an event from the past (some LPs will be processing faster than oth-
ers and hence will have local virtual times greater than others) — violating the causal-
ity constraints of the events in the simulation. Such messages are called straggler
messages. On receipt of a straggler message, the LP must rollback to undo some
work that has been done. Rollback involves two steps: (i) restoring the state to a time
preceding the time-stamp of the straggler and (ii) canceling any output event mes-
sages that were erroneously sent (by sending anti-messages). After rollback, the
events are re-executed in the proper order.

3. Related work

Performance metrics such as speedup [1], scaled speedup [24], and size-up [43]
have been proposed for quantifying the performance and scalability of parallel sys-
tems. While these metrics are useful for tracking performance trends, they do not
provide sufficient information to understand why an application scales poorly on
a simulation system. The utility of performance metrics is further limited because
they compare only the gross-level performance of the systems. They are not indica-
tive of the details of the performance-critical factors that lead to the speedup figure.
Moreover, since speedup is defined with respect to a sequential simulator, it is diffi-
cult to obtain speedup figures that are directly comparable to others. Thus, in order
to enable better implementations of the simulator, a better characterization of the
interrelated performance-critical factors must be made available to developers.

There are several empirical and analytical studies [5,16,18,27,40] of the perfor-
mance of PDES simulators. Most of these studies are restricted to evaluating the im-
pact of a particular simulator optimization on the performance. The optimization is
integrated into an in-house PDES simulator, and the performance of the simulator
with and without the optimization using some set of models is reported. The impact
of the new optimization is not broadly assessed by such a narrow comparison. In
particular, the simulation model used for the comparison significantly influences
the performance and scalability. The reported change in performance is also specific
to the implementation of memory allocation, event-list management, GVT calcula-
tion, and deadlock detection. Accordingly, a set of benchmarks that is representative
of the general class of PDES application domain [19] is needed to sufficiently char-
acterize the performance of a simulator under different working conditions.

Ideally, a benchmark suite should contain representative applications from the en-
tire domain of PDES applications. In addition, the models should be deterministic,
have a stable behavior, and be easily scalable. The simulation model suggested by
Fujimoto [19] consists of a synthetic simulation with a fully connected graph type
topology. The model includes the following workload parameters: (i) number of
LPs, (ii) message population, (iii) time-stamp increment function, (iv) movement
function, (v) computation grain and (vi) initial configuration. By varying each of
the parameters, the model can be used to conduct performance analysis of a new sim-
ulator configuration. Unfortunately, only a small number of the models described by
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Fujimoto [19] are freely available. Moreover, some of the available models have dif-
fering implementations.

Several researchers have explored building general performance analysis frame-
works for PDES simulators. Gilmer [20] defines some performance parameters of
models. The parameters suggested by Gilmer are restricted to communication behav-
ior parameters, and do not capture other important aspects of the models. Reynolds
and Dickens [39] SPECTRUM testbed allows a user to implement a simulator con-
figuration (protocol), supply an application, and specify some characteristics of the
simulation for observation. The supported observable characteristics include deter-
minism, queuing, processing delays, causality, state change characteristics, balance,
activity, and connectivity. The major difference between the SPECTRUM testbed
and the framework presented in this paper is that while SPECTRUM defines perfor-
mance parameters for observation purposes, we generate models from the perfor-
mance-parameter set in order to explore their effect on performance.

Ferscha and Johnson [15] develop a tool for performance prediction of Time
Warp protocols and related optimizations. A Time Warp model is built incremen-
tally and decisions regarding different optimizations are made early in the develop-
ment stage. Other, similar, test-beds that are currently in use include Yaddes [35]
and Maisie [2]. These approaches do not allow a model to be evaluated on different
implementations of a simulation protocol. The framework described in this paper
provides a mechanism for generating a large number of synthetic applications to test
a simulation implementation. Moreover, the representation method can be easily
translated to other simulators. The framework allows the user to test and evaluate
a large collection of performance and scalability related factors.

Synthetic workload generation has been used for characterizing the performance
space of complex systems [26,32]. For example, Kiskis [26] develops a framework
(similar to the one suggested in this paper) for the analysis of distributed real-time
computing systems. He empirically illustrates that the generated synthetic models
are representative of the actual model. Kiskis uses a synthetic workload specification
language to describe the structure and behavior of a robotics application and a dual-
robot simulator and uses the description to generate synthetic workloads.

4. The performance and scalability analysis framework (PSAF)

This section presents a framework for comprehensive analysis of performance and
scalability of PDES simulators. An overview of the framework is shown in Fig. 1.
Central to the framework is the WSL, a language for capturing the performance-crit-
ical attributes of applications. The first step in using the framework is to specify the
workload. A WSL description consists of both real and synthetic workload descrip-
tions. Since the performance-critical attributes are explicitly visible, WSL specifica-
tions are used by a (SWG) to generate synthetic workloads. Synthetic workload
generation allows the performance space of the simulator to be explored methodi-
cally. An automatic translator program translates WSL descriptions to simulator-
specific synthetic models. The translator ensures that the synthetic models conform
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Fig. 1. Performance and scalability analysis framework (PSAF).

to the performance characteristics specified by the WSL description. Real models
must be ported manually.

4.1. Workload Specification Language (WSL)

This section describes WSL. WSL is not a modeling language; rather, it is a lan-
guage for representing the workloads in a format that facilitates performance anal-
ysis of parallel discrete event simulators. WSL supports the description of synthetic
as well as real workloads. Synthetic workload descriptions are based on a character-
ization of a PDES workloads in terms of some fundamental parameters. Specifica-
tion of a real workload is implemented by inserting simulator-specific descriptions
(source code) in the WSL object definition. The representation of real models ex-
poses the structure of the models to the user and allows systematic conversion to
other simulation languages. While this approach does not reduce the task of the ini-
tial modeling of a system, it facilitates translation of models between simulation lan-
guages (environments) with high accuracy. In addition, synthetic workload
descriptions, written using WSL, can be directly applied to the different simulators
(once a WSL translator is written for them).

A workload specification in WSL consists of simulation object definitions fol-
lowed by instantiations of these objects. Each simulation object may have an un-
limited number of definitions. These definitions correspond to the different
simulation kernels (real models) or to a synthetic representation. The translator



V. Balakrishnan et al. | Simulation Practice and Theory 8 (2001) 529-553 535

generates simulator-specific code depending on the target simulation platform. In
the remainder of this section, we overview the representation and translation facets
of WSL [3.4].

4.1.1. Synthetic representation

A simulation object can be represented as a synthetic object — a representation
that does not perform any useful function but produces resource demands that are
similar to a real simulation object. Synthetic objects are used to build synthetic work-
loads. Ideally, the characteristics of the synthetic workloads would match those of
real workloads. For this reason, a study of the performance factors that affect PDES
simulators was carried out. Fig. 2 illustrates the performance factors of PDES sim-
ulators. The performance factors can be classified into six classes. The performance
factors in each of these classes must be optimized if maximum throughput is desired.
Unfortunately, the classes illustrated in Fig. 2 are not independent of each other. The
overall performance is a complex function of all the factors which influence each
class. The process of performance analysis can be simplified greatly if each class
can be examined separately. From this study, factors that influence the workload
were isolated. Several of the parameters have been identified by Fujimoto [17] and

N
Granularity, Memory, Network Topology, 1/0O,
Event Population, Event Probability,
Event Delay, Initial Configuration, Number of
Simulation objects, Number of Processors

Protocol Related Factors
Conservative : Lookahead, Deadlock Resolution

Optimistic : GVT Calculation, Cancellation,
State Saving, Fossil Collection

Event List Management, Timing Model
Memory Allocation, Scheduling

Network Latency,
Protocol Interface(MPI, PVM etc.)
Blocking vs Nonblocking Communication

Operating System,
Coding Language (C++, Java etc.)
Compiler Optimizations

Processor Speed,
Memory and cache latency

Fig. 2. Performance factors for PDES.
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Reynolds [39]. Each parameter is either explicitly defined, or subdivided into more
basic attributes to avoid the interdependence among the parameters. The parameters
supported by WSL are shown in Fig. 3.

This set of parameters was assembled after studying popular simulation problems
used in parallel simulation studies [3]. More precisely, the Shark’s World model [12],
the Colliding Pucks model [22], the ISCAS’89 digital simulation suite [§], and the
Ping Models [5] were ported to our simulation environment and used in determining
the set of parameters. The set of parameters is difficult to identify and as we continue
to learn more about the behavior of the models, the set of parameters may be chan-
ged, and the definitions of the parameters refined. Further analysis of the applica-
tions in the PDES domain may reveal other performance-critical parameters. The
framework can be easily extended to incorporate additional parameters. Neverthe-
less, we will demonstrate later in this paper that this set is sufficient to capture the
characteristics of the considered models with good accuracy.

The performance parameters identified for PDES workloads form the basis for
the representation of synthetic workloads. The syntax of a synthetic description is
shown in Fig. 4. The figure also demonstrates the specification of the parameters.
A complete model consists of a set of synthetic objects with an associated connectiv-
ity pattern (topology). A description of the attributes and their semantics in WSL is
given below:

Input: A process either has external input or does not. Objects that have no inputs
need to have a special initialization function during simulation. Numbering of inputs
is not necessary because, if it becomes necessary to distinguish between the inputs,
then we assume that this information will be available in the event. If an object
has no inputs then this implies that it cannot receive any events from anyone except
itself. To model this, Input is a Boolean variable in the WSL description.

Output: This attribute represents the number of output channels associated with
this simulation object. It influences other synthetic attributes and is used to deter-
mine the number of entries in the lists used to maintain channel attributes. Each

1. Simulation Object related parameters

[a]l Input and Output Behavior [b] Distribution
[c] Delay [d] State Size

2. Event related parameters

[a]l Computation Granularity [b] Event Size
[c] Event Population [d] Event Probability

3. Communication related parameters

a

[al Type of connectivity (Topology)  [bl Number of Processors
[c] Number of Simulation Objects

“In this paper, the number of processors is always equal to the number of LPs.

Fig. 3. The set of parameters used in PSAF.
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SimObject nameOfObject {
SimModel Synthetic {
Input boolean ;
Output number ;
Distribution {distribution}
{separation interval list};
Delay {distribution, {...} }
// One Distribution is needed for each
// output channel
Init  boolean;
IOFunction {distribution}
{separation interval list};
Granularity floating point number;
EventSize number ;
StateSize number;
FileInput number;
FileOutput number;
IterationCount number;

}

where
distribution :=  {UNIFORM | POISSON |
EXPONENTIAL | NORMAL| BINOMIAL | CONSTANT}
{ seed, seed }
separation interval list := a set of pairs of floating point numbers

Fig. 4. Structure of a synthetic object.

output channel is assigned a unique number and has the attribute Delay associated
with it.

Distribution: This is an important attribute that combines several basic param-
eters. It is an algorithm that describes the production of events for the different
output channels. The attribute is specified by selecting a distribution Type. This
is generally a random number generator with an associated probability distribu-
tion. In addition, intervals are associated with each output channel using a separa-
tion interval list. The separation list has an element for each output channel. Every
element consists of a list of intervals. For example, if {{a,b} {c,d}}is the separation
interval list for an output channel, an event is generated on the output channel is
the random number generator produces a number in either of the intervals a to b
or c to d.

Delay: This attribute models the delay for each output channel. A distribution
generator or constant value is assigned to each output channel. It should be noted
that this delay value is not the delay associated with the communication medium.
It is the delay used to model the progress of time in the simulation.

Init: For synthetic model descriptions, the initial values are not critical. However,
this attribute is supported in order to have repeatable outputs and define correct be-
havior of the synthetic model. The initial values for synthetic objects is Boolean.
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IOFunction: This function defines the probability with which the output changes.
This function implicitly takes the current state and the input event. The synthetic
model does not necessarily need this function. It is used as a tool for determining
the correct behavior of the simulation. It can be used to test whether a sequential
simulation of the model produces the same output as the parallel version. Currently
supported function are the distribution generators associated with an interval. If the
number generated by the statistical function lies in the specified interval then the
Boolean output value is inverted. If CONSTANT is defined then the output value
is inverted after the defined number of events are processed.

Granularity: This attribute defines the computational granularity of an event. This
is a critical attribute; it is important that the meaning of this attribute is kept uniform
for all target translators and independent of architectures. The defined granularity
does not include the time to schedule the next event nor the granularity introduced
by the simulation environment. Granularity is defined in milliseconds and should be
translated to the appropriate number of cycles for an architecture. The conversion of
this number to the actual number of cycles can be done with the assumption that the
same architecture was used for the translation and simulation. Currently, the trans-
lator introduces the specified granularity in the event in the form of a loop.

EventSize: The size (in number of bytes) of the events is specified using this attrib-
ute. The number specified is the incremental size only. This means that only the size
of the event information is counted, but not the additional space introduced by dif-
ferent implementations. This parameter along with the state size and the number of
events, models the total memory requirements of the simulation.

StateSize: This attribute represents the size (in number of bytes) of the state of a
simulation object. Like FventSize, only the state size of the simulation object is re-
corded. The additional size introduced by specific implementations is not modeled.
This parameter can be used to check if the garbage collection routines are perform-
ing their operations correctly and in the determination of the rate of garbage collec-
tion for a simulation. Rate of garbage collection can then be used for balancing the
tradeoffs between speed and memory requirements.

FileInput: This parameter is used to define the number of bytes read by a simula-
tion object every time it is gets an event. This is set to zero if the object performs no
reads. This affects the size of the file queues in optimistic protocols because a roll-
back can create the need for the input to be read again.

FileOutput: This is equal to the number of bytes written out, each time the simu-
lation object is scheduled for execution. This number can be zero for no writes. This
attribute affects the size of the file queues in optimistic protocols where only after the
event has been committed can the write be made to the file. The FileInput and File-
Output attributes are used to model the I/O behavior of the simulation object.

IterationCount: This attribute defines the number of events that are to be pro-
cessed by the simulation object. If this parameter is zero, then the object will not gen-
erate events during simulation. This means that if the simulation is to come to a
natural stop (as opposed to forcing a termination after a particular time), then all
sources must be provided with this parameter and every cycle in the graph (directed
graph representing connectivity) must have a source.
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4.1.2. Real-model representation

WSL supports real model descriptions in the form of simulation-specific models.
Each simulation environment is assigned a unique tag which is used to mark model
descriptions specific for it (using the keyword SimModel). When generating real sim-
ulation models for a given simulation environment, the translator searches for the
tag corresponding to the environment.

The structure of a real object description is shown in Fig. 5. As shown in the fig-
ure, the actual descriptions of the target simulation environment are inserted as na-
tive code between the double square brackets, i.e., [[...]]. The Event keyword is used
to describe the structure of the event and provide initial values to variables in the
event structure. The Event description contains the source code for the events that
are exchanged between simulation objects. Currently, the translator supports only
one event description per simulation model. The State keyword is followed by the
source code for the state structure of the simulation object and its corresponding ini-
tialization function. The Object description is split into six optional sections. They
are:

(a) Variables: Variables or data structures needed to model the simulation object

are added here.

(b) Constructor: The code inserted here is translated into a function. If the inserted

code was in C++, then this function is equivalent to the constructor for the sim-

ulation object class.

(c) Initialize: The code inserted here is executed once before the start of simulation.

SimObject name0fObject {
SimModel PDESSimulator {
Input  boolean
Output number ;

Event [[ // declare the variables in the event here]]
[[ // initialize the Event variables declared ||;

State [[ // declare variables needed in the state here]]
[[ // initialize State the variables declared here]];

Object {baseObjectName} {

Variables [[ // declare any special variables here J];

Constructor [[ // constructor (C++ terminology) for the object ]];
Initialize [[ // put the initialization code here ]|;

Execute [[ // code for processing the received event goes here ||;
Finalize |[[ // code to be executed at the end of simulation]];

[[ // additional functions can be written here |]];

Fig. 5. Structure of a real object.
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(d) Execute: Code inserted here is executed every time the object is scheduled for

execution.

(e) Finalize: Code placed here is executed after the simulation has been completed.

(f) The last section is used for inserting functions that may be called by the code in

any of the above sections.

Once the simulation objects have been defined, a net-list representing a set of ob-
jects and their connectivity is instantiated. The net-list definition enables optional
statically-defined simulation object to processor assignments. This feature also al-
lows the study of partitioning algorithms as the translator generates appropriate
code to assign simulation objects to different processors. Each object definition
may be instantiated multiple times, and connected to other objects using the net-list.
Each simulation object (SimObject) may have only one synthetic description but
multiple real descriptions. The translator can be directed to choose either synthetic
or simulator-specific descriptions.

4.2. Synthetic Workload Generator (SWG)

SWG is a program that automatically generates workloads with emphasis on dif-
ferent performance-related properties. Thus, a suite of models where one or more pa-
rameters are varied while the others are held at fixed values can be generated. This
enables methodical analysis of the behavior of the simulator with respect to the pa-
rameter being varied. Consequently regions of good and bad performance can be
easily identified.

SWG operates in two phases: (i) the graph generation phase, and (ii) the model
generation phase. The graph generation phase builds a directed graph according
to the parameters specified. The controllable graph parameters are the number of
nodes and graph topology (e.g., GRID, TREE, COMPLETE, RANDOM). The
graph generation phase was built using the Library of Efficient Data-types and Al-
gorithms (LEDA) [30]. Several graph/network topologies can be generated by using
the LEDA framework. The generated graph is checked for compliance to additional
properties such as number of sources, number of sinks, and the existence of cycles.
The second phase starts with the graph representation and converts each node to a
synthetic simulation object by filling in the values for the parameters shown in Fig. 4.
Once the second phase terminates, the simulation object description and the net-list
for the WSL description of the workload are ready.

Fig. 6 shows the structure of the SWG. The parameter values are generated using
statistical distributions that are bound at the time of generation. It is possible to
override the statistical distribution specification of the parameters, by supplying con-
stant values instead. The language can be extended to model additional distributions.

4.3. WSL translator
The translator is the critical component of this performance analysis framework.

The translator translates the synthetic specification into simulation models that mi-
mic the specified behavior on the given simulation system. The translator consists of
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Fig. 6. Structure of the SWG.
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a parser that calls predefined functions for each simulation environment supported
by the translator. Building a translator for a new simulation environment involves
filling in the predefined methods; only the translation phase of the generator needs
to be modified. This is discussed in more detail in the following subsection.

Accurate translation of the synthetic objects is crucial to the success of the syn-
thetic models in exercising the system according to the parameter values specified
in the WSL description. Each parameter in the synthetic description is well defined,
and models that correctly exhibit the required behavior can be built. The translator
supports partitioning the network and assigning simulation objects to different pro-
cessors as required by the WSL specification.

The WSL translator is implemented using the PCCTS [33] framework. A gram-
mar was defined and the PCCTS framework generates a parser that parses an input
WSL description [3]. The parser first performs a syntax check on the WSL descrip-
tion before performing semantic checks. During the semantic check, the parser calls
“publish” routines from a set of predefined publishing routines. These publish rou-
tines write out simulator-specific code. Currently, in PSAF, the publish routines are
encapsulated into a PublishSimulatorCode class. The publish routines are all defined
as member functions of this class. To retarget a translator to generate code for a dif-
ferent simulator, all that is required is the modification of these publish routines.

5. Analysis — using PSAF
In this section, we illustrate the use of PSAF in analyzing some performance and
scalability aspects of the WARPED [36] simulation kernel. The models used to per-

form the experiments were generated by the SWG. The models were then translated
to WARPED code using a translator written for wARPED. > All the experiments

2 The warPED kernel is freely available at http://www.ececs.uc.edu/~paw/warped/
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reported in this section were conducted on a SUN SparcCenter 1000 with four pro-
cessors. All experimental results were averaged from five separate runs of the exper-
iment. This is done to reduce the system effects on the results. In addition, for
conducting detailed profile measurements of the simulation performance, we have
employed a commercial program execution profiling tool (QUANTIFY, from Ratio-
nal Software [38]). Since monitoring the performance of an executable can be an in-
trusive activity, we needed a profiling tool that can be adjusted for the level of
intrusiveness. For most of these experiments, only specific portions of the executable
code have been profiled. For experiments on WARPED, the kernel was configured to
use an aggressive cancellation strategy [37] and Least Time Stamp First (LTSF)
scheduling (of objects on a single LP). The communication interface used was the
Message Passing Interface (MPI) [21].

In Section 4, the set of performance-critical parameters were described. In this sec-
tion, the effect of several of these parameters on the performance of synthetic models
are explored. In addition to illustrating the use of the framework in exploring perfor-
mance regions of the simulation environment, these experiments provide insight into
the behavior of WARPED and other PDES simulators.

The first experiment involved using WSL to represent the Ping-Pong models de-
veloped by Barriga et al. [S]. The SWG was used to produce versions of these models
where the number of (self-pinging) objects per each LP was scaled. The study was
conducted for one and two LP configurations. Fig. 7 depicts the effect of the increas-
ing number of objects on the execution time. The execution time increases uniformly;
this is also reflected in the uniform decrease in the rate of committed events. If the

n
o
o
(=]
o

Execution Time (milliseconds)

2 LP case

1 LP case
3

Number of Objects 10

Fig. 7. Self Ping: effect on execution time.
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model is executed on a single processor and the amount of work done by each LP is
constant, then by varying the number of objects the overhead for scheduling can be
estimated.

Upon conducting a more detailed profiling of the results, we discovered that most
of the time is spent in the insertion of the event into the input queue of the object.
Other overheads that affect the execution time are introduced by co-operative tasks,
like GVT calculation in Time Warp and contention on internal data structures
shared by the kernel. Since there is no communication between the LPs, communi-
cation overheads need not be considered — considerably simplifying the analysis.
This result is intriguing because it illustrates a problem that is of considerable inter-
est to the PDES community. The search for an efficient event list data structure has
been recognized as a potential bottleneck [6,11,13,25,34,41]. Steinman [42] explored
several event list data structures and compared their characteristics. However, a
probability distribution was used to model the arrival of events (i.e., the event
stream) and the reported observations were based on these synthetic event streams.
The synthetic event stream generated by probability distributions might not reflect
the event streams of real applications. The synthetic benchmarks generated by the
SWG are representative of the actual model and event traces from the synthetic
benchmarks are more representative of the real applications than probabilistic event
streams. Hence a simulation model (synthetically generated or a mixture of real and
synthetic) can be used to explore the efficiency of the different event list data struc-
tures more realistically.

In the next experiment, the effect of increasing the number of simulation processes
on overall performance was investigated. The Ping model (synthetic version) was
used in this experiment. The model was executed on a single processor (no commu-
nication costs). A two object experiment was constructed, and the number of LPs
were scaled. Figs. 8 and 9 illustrate the effect of scaling the number of LPs on the
execution time and the event commitment rate. Since the available parallelism in
the model is two-way, using more than two physical processors does not yield im-
provement in the commitment rate. For models where the level of parallelism is
not directly discernible, such an experiment can be used to find the average available
parallelism. *

The synthetic Ping-Pong model was used to study the effect of event sizes on the
simulation system. This study is useful because, in this benchmark the events are
continuously being circulated through the communication medium. Thus, the ability
of the communication medium to exchange the messages with the application layer is
investigated. Fig. 10 shows that the event sizes less than 100 bytes do not perturb the
system, while larger event sizes have a pronounced effect on the performance. The
decrease in event commitment rate can be attributed to the saturation of the message
buffers. The longer messages require a longer message propagation time as well [21].

In a related experiment, the synthetic Ping benchmark is used to explore the
local buffer sizes in the message passing layer. The local buffer sizes are used

3 This is possible as long as the limitations of the uniprocessor is not reached.
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Fig. 8. Effect on execution time.

to temporarily store the messages arriving at each LP. Thus, by scaling the mes-
sage generation rate at the LPs, the message receive rates of the receiving LPs are
scaled and the capacity of the buffers is tested. Fig. 11 shows that the processing
rates stabilize after a certain message generation rate. This can be attributed to
the local buffers getting saturated after a specific message generation rate (see
Fig. 12).

As the aforementioned experiments have shown, the synthetic benchmarks can be
used for a wide variety of purposes. One of the best uses of these benchmarks is to
study scalability of parallel discrete event simulators. The input to the synthetic
workload generator can be modified to generate an assortment of benchmarks to
characterize the performance of parallel discrete event simulators across several di-
mensions. Fig. 13 illustrates the input description to the synthetic workload genera-
tor for generating a sample synthetic benchmark. As can be seen from the figure, the
example contains several parameters that can be used to study scalability. Some of
these parameters are as follows:

e Number of Simulation Objects.

e Number of Logical Processes.

e Granularity of each Object.
e Event Size.
o State Size.
e File I/O.
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[/ ks sk sk s ok s s ok o ek sk s s e ok sk ks s o e ek ok ok kK koK sk sk ok ek sk sk sk ok ek stk ok sk ook ok ok -/ /

// This file defines all the input parameters for the generated workload //
/7 kst stk sk ok sk sk ok sl ko ke st sk ok sk stk o stk ek etk ook ko sk ok sk ok Rk SOk R Kok R kk [/

WORKLOAD PARAMETERS

No. of Simulation_Objects := 1000

No. of Source_0Objects := 100

No. of Sink_0Objects := 100

No. of Source Iteration_Count := 1000
% of Objects Performing IO := 10

No. of LogicalProcesses := 10

TOPOLOGY PARAMETERS

No_0Of_Edges := 100
Graph_Type := GRID
Graph_Display := No

SIMULATION OBJECT PARAMETERS

Average_Event_Size := 5
Event_Size_Variance := 1
Average_State_Size := 10
State_Size_Variance := 2
Average_Granularity := .01

Granularity_Variance := .05
Number of Bytes_to_Write := 10
Write_Variance := 5

Number of Bytes_to_Read := 10
Read_Variance := 5

ENDOFFILE
Fig. 13. A sample SWG input file.

6. Retargetting the translator

To illustrate the portability of PSAF to other simulators, translators were de-
veloped for MAISIE, PARSEC [2], GTW++ [14] and WARPED [36]. For this effort,
two graduate students (who were not familiar with PSAF) were instructed to im-
plement the translators. Approximately two days were spent in studying the inter-
face of the different simulation environments. Once the students had familiarized
themselves with PSAF and the interfaces of the target simulators, they imple-
mented the translators in approximately two more days (for each distinct backend
target). Fig. 14 shows the actual translated source code for the different simulators
from a small WSL description of the Ping-Pong example. The PSAF framework
along with the translators are freely available at http://www.ececs.uc.edu/~paw/
psafl.
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Generated Parsec code

entity SrcPingPongObiject(int id, char* myName, int numDests,
int* dests) {
struct SyntheticObjData obj;
Ping-Pong.wsl initObjectData(&obj, id, myName, numDests, dests);
ing- 9-WS] __ setlnputs(&obj, 0);
Slmepect SrcPlngPQngOb]ecl { setNoOfOutputs(&obj, 1);
SimMode! S_ynlhetlc { setOutputDistrib(&obj, ALL);
Input "‘JS; setChannelDelay(&obj, CONSTANT, 1.000000, 10.000000, 0);
Qu!pyt 1_ H ' setlnitVal(&obj, 0);
Distribution Al ) setCausalDistrib(&obj, CONSTANT, 1.000000, 10.000000);
Delay {[CONSTANT {1. 101} ; setCausalLimit1 (&obj, 0,000000, 5.000000);
Init0 ; . setBytesToRead(&obj, 0);
IOFunction CONSTANT {1,10}{{(0.5)}} ; setBytesToWrite(&obj, 0, myName)
Granulgnly 0..00784563 H setlterationCount(&obj, 1000);
EvenISIZG 4.' setGranularityCount(&obj, 1, 10);
StateSize 7 ; obj.getNextDest = getNextDest;
Filelnput 0 ;
FlleO_utput 0; initialize(&obj);
IterationCount 1000 ; do {
} receive (SyntheticEvent syn) {
| executeProcess(&obj);
)
} while (1);
finalize {
freeObjectData(obj);
}
)

Generated GTW++ code

class SrcPingPongObiject : public CLP {
INTERNAL_IMPLEMENTATION:
virtual void intialize( CGTWApp *app); Generat_ed WARPEDOOd? — -
virtual void process_event (const CEvent *event); class SrcPingPongObiject : public Sy Obj {
virtual void wrapup( CGTWApp *app); public:
irtual CLPState “get \{ id){return &; 3
virtual ate "get_state(void){return &state;} ~SrcPingPongObiect() {}
INTERNAL_IMPLEMENTATION: .

L 3 . " BasicState* allocateState() (
i:c;rngPongOblectState state; // Modifiable state return (BasicState *) new SrcPoingPongObiject_state();
char *name; }

?“‘ numb_erOIfDeslinations; SrcPingPongObiject(int id, char* myName, int numDests, int* dests) :
int* destinationsArray; SimObj(id, MyName, numDests, dests) {}
SyntheticObjData synObj;
void setupObjectData() {
INTERFACE_TO_CLIENTS_ONLY : SyntheticSimObj::setupObjectData();
SrcPingPongObiject(int objid, char* objName, setinputs(true);
int numDests, int* dests, CGTWApp *app) : setNoOfOutputs(1);
CLP(app)( setOutputDistrib(ALL);
id = objld; setChannelDelay(CONSTANT, 1, 10, 0);
name = objName; setlnnVaI(O)_; . .
destinationsArray = dests; se&ausalleqlb(CQNSTANT. 1,10);
synObisetinputs(0); setCausalLimit(0, 5);

V! > ' set BytesToRead(0);
synOb!.se(NoofOu.mu_lsﬂ); setBytesToWrite(0, name);
SynObj.setOutputDistrib(ALL): setiterationCount(1000);
synObj.setChannelDelay(CONSTANT,1,10,0); )
synObj.setlnitVal(0);
synObj.setCausalDistrib(CONSTANT,1,10); void adjustGranularity() {
synObj.setCausalLimit(0,5);

¥ )
¥ 3

Fig. 14. Translating WSL to GTW++, PARSEC and WARPED.

As the parallel conservative and optimistic kernels of MAISIE and PARSEC were
not available, we could only compare the sequential versions of MAISIE and PAR-
SEC to other simulators. Fig. 12 presents a comparison between the execution per-
formance of MAISIE, PARSEC, GTW++ and WARPED for the synthetic Ping-Pong
model. From the figure, it is seen that while the sequential version of GTw++ scales
well, the sequential versions of WARPED, MAISIE and PARSEC are slower. An
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investigation into this result, revealed that the choice of event list data structures
used in the different simulators was the major difference in the implementations.
The sequential version of GTw++ uses either the (default) Calendar Queue [6] or
the SkewHeap [25] as its event list data structure while wWARPED (as well as MAI-
siE and PARSEC) use a straightforward, but less efficient linked list for their event
list data structure.

The experiments discussed in this paper are intended as a sample of the capabil-
ities of the framework. They are not sufficient for a full characterization of a PDES
simulator; we are only making it possible to develop a real benchmark suite for
PDES, and not actually developing such a suite. Using SWG, workloads for testing
any of the performance parameters can be generated effortlessly. For example, a set
of experiments to investigate the efficiency of different check-pointing algorithms can
be constructed using the SWG. *

7. Conformance analysis

Section 5 illustrated the utility of the synthetic performance and scalability anal-
ysis framework. However, one question remains to be answered: how representative
is a synthetic model of its real counterpart (i.e., how successful is the set of synthetic
parameters in capturing the characteristics of the real model?).

In order to verify that synthetic representations of real workloads reflect the
behavior of the original workloads, the behavior of synthetic models built for
two distinct applications are compared to behavior of the real applications. The
two chosen applications are: (i) the c17 benchmark from the ISCAS’85 benchmark
suite; a model with low event granularity, and (ii) the Colliding Pucks model; a
model with high event granularity. Fig. 15 compares the event commitment rates
of the c17 gate level logic circuit and its synthetic equivalent. For a small number
of input vectors, the real and the synthetic models behave similarly but as the
number of input vectors increase, the real model executes faster and shows a high-
er processing rate than the synthetic model. This can be explained by the fact that
the synthetic workloads could not match the low granularity of the gate level cir-
cuit description due to the inherent minimum weight of the statistical distribu-
tions. Conversely, examining Fig. 16 (which compares the event commitment
rates of the colliding pucks model and its synthetic equivalent), the synthetic mod-
el’s behavior is almost identical to the actual model’s behavior for this high gran-
ularity model - increasing the confidence in the representativeness of our
framework.

4 In optimistic protocols, like Time Warp, there is a need to maintain copies of old LP states for recovery
from over-optimism (check-pointing). The effect of the state size on the performance can be estimated by
generating workloads with different values for the state size parameter.
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8. Conclusion

This paper introduces a PSAF for parallel discrete event simulators. One of the
primary reasons restricting the development of PDES technology has been the lack
of a comprehensive set of models that can be used to explore the performance of sim-
ulators objectively, and to expose bottlenecks and areas of inefficiency. PSAF ad-
dresses this need by providing a medium for the generation of models with specific
performance properties, allowing controlled exploration of the performance space
of the simulation environment.

PSAF is based on a WSL that allows the workload characteristics of real applica-
tions to be captured effectively using a set of performance-critical parameters. The de-
scription is then translated into simulator-specific synthetic models with equivalent
performance characteristics. The effect of the performance parameters can then be
studied by generating models where one or more of the parameters are modified to
explore a specific class of models. This processes is facilitated using a SWG, that gen-
erates models that cover the specified ranges of the parameters under study.

In this paper, we have illustrated how the PSAF framework can be used to com-
pare the performance of different simulators. Specifically, we compared the perfor-
mance of MAISIE, PARSEC [2], GTw++ [14] and WARPED [36]. The portability of
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the framework was established by the quick development of translators for each of
the simulators. In addition, PSAF has many important applications throughout the
development cycle of simulators and models. Because PDES is used to simulate in-
creasingly complex applications, it is important to be able to evaluate the feasibility
of an implementation before embarking on a complex modeling effort. For example,
since the framework supports a mixture of real and synthetic objects it can be used to
build a prototype of the simulation model before the actual one is built. Moreover,
the WSL representation of real models exposes their implementation details. This fa-
cilitates straightforward and accurate translation of a model to other systems such
that unbiased performance comparisons are possible.

With the help of the SWG, PSAF can be used to characterize newly built simula-
tion kernels, or the effect of new optimizations to existing kernels. Scalable workload
models can be easily generated to study how well the simulation kernels scale. For
each simulator, a small amount of effort is required to build the simulator-specific
portion of the WSL translator. The synthetic representation permits the analysis
and characterization of the performance trends of a simulator using the SWG. More-
over, SWG can be used to perform capacitance testing on the simulator. The real
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models can be used, in conjunction with the synthetic models generated by SWG, to
provide a comprehensive, realistic, and portable benchmark suite.

Once the benchmark suite is developed, the reporting of performance results of
simulators can be standardized. A by-product of using the framework has been
the development of a standard template [3] for reporting results. The template is par-
tially generated from the WSL parameter specification file. Standardized result re-
porting has several advantages including the ease of interpretation, ease of
comparison, and detection of unreported parameters.
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