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Managing Pending Events in Sequential & Parallel
Simulations using 3-Tier Heap & 2-Tier-LadderQueue
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JULIUS D. HIGIRO, CSE Department, Miami University, USA

Performance of sequential and parallel Discrete Event Simulation (DES) is strongly influenced by the data struc-

ture used for managing and processing pending events. Accordingly, we propose and evaluate the effectiveness

of our multi-tiered (2 and 3 tier) data structures and our 2-tier Ladder Queue, for both sequential and optimistic

parallel simulations on distributed memory platforms. Our experiments compare the performance of our data

structures against a performance-tuned version of the Ladder Queue, which has shown to outperform many

other data structures for DES. The core simulation-based empirical assessments are in C++ and are based on

2,500 configurations of well-established PHOLD and PCS benchmarks. In addition, we use an Avian Influenza

Epidemic Model (AIM) for experimental analyses. We have conducted experiments on two computing clusters

with different hardware to ensure our results are reproducible. Moreover, to fully establish the robustness of

our analysis and data structures, we have also implemented pertinent queues in Java and verified consistent,

reproducible performance characteristics. Collectively, our analyses show that our 3-tier heap and 2-tier ladder

queue outperform the Ladder Queue by 60× in some simulations, particularly those with higher concurrency

per Logical Process (LP), in both sequential and Time Warp synchronized parallel simulations.
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1 INTRODUCTION
Sequential and parallel DES are designed as a set of logical processes (LPs) or “agents” that interact

with each other by exchanging and processing timestamped events or messages [10]. Events that

are yet to be processed are called “pending events”. Pending events must be processed by LPs in

priority order to maintain causality, with event priorities being determined by their timestamps.

Consequently, data structures for managing and prioritizing pending events play a critical role

in ensuring efficient sequential and parallel simulations [5, 6, 12, 18]. The effectiveness of data

structures for event management is a conspicuous issue in larger simulations, where thousands

or millions of events can be pending [2, 16]. Overheads in managing pending events is magnified
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in fine-grained simulations where the time taken to process an event is very short – i.e., LPs use
only few 100s to 1000s of instructions per event. Furthermore, the synchronization strategy used in

PDES, Time Warp in particular, can further impact the effectiveness of the data structure due to

additional operations required for rollback-based recovery.

1.1 Motivation
Many investigations have explored the effectiveness of a wide variety of data structures for man-

aging the pending event set, as discussed in Section 5. Among the various data structures, the

Ladder Queue proposed by Tang et al [18] has shown to be the most effective data structure for

managing pending events [4, 5], particularly in sequential DES. Accordingly, we aimed to replace

the heap-based data structures (discussed in Section 4) used in our TimeWarp synchronized parallel

simulator with the Ladder Queue. Section 4.5 discusses our Ladder Queue implementation and its

fine-tuning.

The Ladder Queue outperformed our multi-tier heap-based data structures in certain sequential

simulations, consistent with observations by other investigators [5, 18]. However, as detailed

in Section 7, the Ladder Queue was substantially slower in two cases – ❶ high concurrency:

a larger number of concurrent events (i.e., events with same timestamp) per LP, and ❷ Time

Warp synchronized parallel simulations conducted on a distributed memory computing cluster.

Conversely, our multi-tier data structures performed well in parallel simulations.

To provide a good balance for both sequential and optimistic parallel simulations, we propose

a significant change to the design of the Ladder Queue. Our revised data structure, discussed

in Section 4.6, is called 2-tier Ladder Queue (2tLadderQ). Various configurations of PHOLD and

PCS benchmarks are used to assess the effectiveness of the multi-tier data structures vs. our fine-

tuned implementation of the Ladder Queue. In addition, we have also conducted experimental

analysis using an Avian Influenza Epidemic Model (AIM) detailed in Section 3.3. Results from our

experiments discussed in Section 7 data shows 2tLadderQ provides comparable performance in

sequential simulations but outperforms the Ladder Queue in optimistic parallel simulations. Our

3-tier heap (3tHeap) outperforms our 2tLadderQ in high concurrency scenarios.

2 OVERVIEW OF PARALLEL SIMULATOR
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Fig. 1. Overview of a parallel MUSE simulation

The implementation and assessment of the different

data structures have been conducted using our par-

allel simulation framework called MUSE. It has been

developed in C++ and uses the Message Passing

Interface (MPI) library for parallel processing. MUSE

uses TimeWarp and standard state saving approach

to accomplish optimistic synchronization of the LPs.

A conceptual overview of a parallel simulation is

shown in Figure 1. A MUSE simulation is organized

as a set of Logical Processes (LPs) that interact with each other by exchanging virtual timestamped

events. The simulation kernel implements core functionality associated with LP registration, event

processing, state saving, synchronization, and Global Virtual Time (GVT) based garbage collection.

The kernel uses a centralized Least Timestamp First (LTSF) scheduler queue for managing

pending events and scheduling event processing for local LPs. With a centralized LTSF scheduler,

event exchanges between local LPs do not cause rollbacks. Only events received via MPI can cause

rollbacks. The scheduler is designed to permit different data structures to be used for managing

pending events. This feature is used to experiment with the different pending event scheduler
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queues. A scheduler queue is required to implement the following key operations to manage

pending events:

❶ Enqueue one ormore future events: This operation adds the given set of events to the pending
event set. Multiple events are added to reprocess events after a rollback.

❷ Peek next event: This operation returns the next event to be processed. The event is used to

update an LP’s LVT and schedule it. Note that peek does not dequeue events.

❸ Dequeue events for next LP: In contrast to peek, this operation dequeues concurrent events

(i.e., events with the same receive time) to be processed by an LP. Concurrent events could have

been sent by different LPs on different MPI-processes. A total order within concurrent events is

not imposed but can be readily introduced if needed.

❹ Cancel pending events: This operation is used as part of rollback recovery process to aggres-

sively remove all pending events sent by a given LP (LPsender ) to another LP (LPdest ) at-or-after a

given time (trollback ). In our implementation, only one anti-message with send time trollback is

dispatched to LPdest from LPsender to cancel prior events sent by LPsender to LPdest at-or-after

trollback . This feature short-circuits the need to send a large number of anti-messages thereby

enabling faster rollback recovery. This feature also reduces scans required to cancel events in

Ladder Queue data structures discussed in Section 4.5 and Section 4.6.

2.1 Experimental Platforms
The design of MUSE and the experiments reported in this paper were conducted using the following

two different distributed-memory compute clusters:

① RedHawk cluster: Each compute node has two quad-core Intel Xeon ® CPUs (E5520) running

at 2.27 GHz (with hyperthreading disabled) and 32 GB of RAM (4 GB per core) in Non-Uniform

Memory Access (NUMA) configuration. The nodes run Red Hat Enterprise Linux 6, with Linux

(kernel ver 2.6.32) interconnected by 1 GBPS Ethernet. The simulation software was compiled

using GCC version 4.9.2 (-O3 optimization level) with OpenMPI 1.6.4.

② Oakley cluster: The second cluster was used to ensure that the experimental results are consis-

tent and reproducible. The compute nodes on this cluster have two hex-core Intel Xeon ® x5650

CPUs running at 2.67 GHz (with hyperthreading disabled) and 48 GB of RAM (4 GB per core) in

Non-Uniform Memory Access (NUMA) configuration. The nodes run Red Hat Enterprise Linux

6, with Linux (kernel ver 2.6.32) interconnected by 40 GBPS Infiniband. The simulation software

was compiled using ICC version 16.0.3 (-O3 optimization level) with OpenMPI 1.10.5.

3 BENCHMARKS AND APPLICATION USED FOR EXPERIMENTAL ASSESSMENTS
The experimental analyses have been conducted primarily using parallelized version of the classic

Hold synthetic benchmark called PHOLD. We have also used the Personal Communication Service

Network (PCS) model proposed by Carothers et al [1]. These benchmark applications have been

used by many investigators for assessment of data structures [5, 18, 19]. Furthermore, we have also

experimented with a parallelized epidemiological model of the global spread of avian influenza via

migratory waterfowl [15–17]. A brief overview of these benchmarks is presented in the following

subsections.

3.1 PHOLD benchmark
The PHOLD benchmark has been used by many investigators because it has shown to effectively

emulate the steady-state phase of a typical simulation [5, 18]. Our PHOLD implementation developed

using MUSE provides several parameters (specified as command-line arguments) summarized in

Table 1. The benchmark consists of a 2-dimensional toroidal grid of Logical Processes (LPs) specified

via the rows and cols parameters. The total number of LPs in the simulation is rows × cols. LPs
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Table 1. Parameters in PHOLD benchmark

Parameter Description Parameter Description

rows Number of rows in model. cols Number of columns in model.

events-
PerLP

Initial number of events per LP. simEnd-
Time

Simulation end time.

delay-
distrib

Event timestamp distribution* recvr-
distrib

Receiver ID distribution*

%self-
Events

Fraction of events LPs send to them-

selves.

delay or

λ
Parameter for distribution specified

by delay-distrib.
recvr-
range

Parameter for distribution specified

by recvr-distrib.
granu-
larity

Additional compute load per event. imbal-
ance

Imbalance in partition, i.e., more

LPs on some MPI-processes.

*Distribution can be one of: “uniform”, “poisson”, or “exponential”

are evenly partitioned across the MPI-processes used for simulation. However, the imbalance
parameter influences the partition, with larger values skewing the partition such that more LPs

are assigned to some partitions (see [9] for details). The imbalance parameter has no impact on

sequential simulations.

The PHOLD simulation commences with a fixed number of events for each LP, specified by

the eventsPerLP parameter. For each event received by an LP a fixed number of trigonometric

operations determined by granularity are performed to place CPU load. For each event, an LP

schedules another event to a randomly chosen adjacent LP determined by recvr-distrib and

recvr-range parameters. The selfEvents parameter controls the fraction of events that an LP

schedules to itself. The event timestamps are determined by a given delay-distrib and delay or

λ parameters.

The combination of parameters can be used tomodel different interaction patterns and simulation-

time behaviors of various models. Specifically, combinations of these parameters influence the

number of concurrent events (i.e., events with the same timestamp) that are scheduled to be

processed by a given LP. The number of concurrent events strongly influences rollback probabilities

as well as the effective performance of our queues. Section 7 explores the impact of these parameters

on scheduler queue performance using 2,500 different configurations.

3.2 Personal Communication Service Network (PCS) model
The PCS model [1] has also been used to assess effectiveness of the proposed priority queues. The

PCS model consists of “cells” (i.e., cellular towers) that transmit and receive phone calls made by

“portables” (i.e., cell phones). Portables are mobile and travel to various cells. Cells are modeled using

LPs organized as a matrix specified by rows ×cols command-line arguments to the model. Each

cell contains a fixed number of wireless channels that are time-division multiplexed to portables

on demand for cellular communication. Life cycle of each portable is modeled using an event

with the following three fields: ① moveIntervalMean: mean for exponential distribution to model

movement of portables between cells, ② callIntervalMean: mean for exponential distribution to

model call intervals, and ③ callDurationMean: mean of a Poisson distribution used to determine

duration of calls [1]. The minimum of these 3 fields determines the behavior of a portable – i.e.,
completion of a phone call, arrival of the next portable call at a cell, and the departure of a portable

from its current cell to a neighboring cell. The simulation ends when a given simEndTime is reached.
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3.3 Avian Influenza Epidemic Model (AIM)
The Avian Influenza Epidemic Model (AIM) characterizes the spread of avian influenza viral strains

via 22 high risk migratory waterfowl species. Migratory waterfowl populations and migration

flyways are automatically generated from Geographic Information System (GIS) data were obtained

from the Global Register for Migratory Species (GROMS) database. Collocated birds of the same

species are modeled as one aggregate agent called a “flock”. Each flock is modeled by 1 LP. The full

model consists of 3,088 flocks, modeled as interacting LPs and is simulated for 2 years to study the

dispersion of viral strains due to migratory birds. The model involves a very dynamic interaction

patterns and a broad range of timestamps. This model also uses rollback-reduction optimizations

accomplished using proxy agents (see [16] for details) to minimize rollbacks and to provide good

scalability.

4 SCHEDULER QUEUES
Table 2. Comparison of asymptotic time complexities (i.e., Big O)
of different data structures

Name Enqueue Dequeue Cancel

heap log(e · l ) log(e · l ) z · log(e · l )
2tHeap log(e · l ) log(e · l ) z · log(e )+
fibHeap log(e ) + 1 log(e ) + 1 z · log(e ) + 1
3tHeap log( ec ) + log(l ) log(l ) e + log(l )
ladderQ 1 1 e · l
2tLadderQ 1 1 e · l÷ t2k

Legend – l : #LPs, e : #events / LP, c : #concurrent events, z : #canceled
events, t2k : parameter, 1: amortized constant

The pending events are managed by

different scheduler queues that uti-

lize different data structures to imple-

ment the key operations discussed in

Section 2, namely: enqueue, peek, de-

queue, and cancel. In this study we

have compared the effectiveness of 6

different non-intrusive queuing data

structures namely: ❶ binary heap

(heap), ❷ 2-tier heap (2tHeap), ❸ 2-

tier Fibonacci heap (fibHeap), ❹ 3-

tier heap (3tHeap), ❺ Ladder Queue

(ladderQ), and ❻ 2-tier Ladder Queue (2tLadderQ). The queues are broadly classified into two

categories, namely: single-tier and multi-tier queues. Single-tier queues such as heap use only a

single data structure for accomplishing the 4 key operations. Conversely, multi-tier queues use

to organize events into tiers, with each tier implemented using different data structures. Table 2

summarizes the asymptotic time complexities of the 6 data structures discussed in the following

subsections.

4.1 Binary Heap (heap)
The binary heap (heap) is a commonly used single-tier data structure for implementing priority

queues. It outperformed a Binomial heap in our analyses. It has been implemented using a conven-

tional array-based approach. A std::vector is used as the backing container and C++11 algorithms

(std::push_heap, std::pop_heap) are used to maintain the heap. The heap is prioritized on both

timestamp and LP’s ID (to dequeue batches of events), with the lowest timestamp at the root of

the heap. Operations on the heap are logarithmic in time complexity – given l LPs each with e
events/LP, the time complexity of enqueue and dequeue operations is O (log(e · l )) as shown in

Table 2. If event cancellation requires z events to be removed from the heap, the time complexity is

O (z · log(e · l )). Consequently, for long or cascading rollbacks the cancellation costs are high.

4.2 Two-tier Heap (2tHeap)
The 2tHeap is designed to reduce the time complexity of cancel operations by subdividing events

into two distinct tiers as shown in Figure 2. The first tier has containers for each local LP on an

MPI-process. Each of the tier-1 containers contains a binary heap of events (the second tier) to be
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Fig. 2. 2-tier Heap
(2tHeap)

processed by a given LP. In 2tHeap both tiers are maintained as independent

binary heaps. Consequently, given l LPs and e pending events per LP, enqueue
and dequeue operates require O (log e ) time to insert in tier-2 followed by

O (log l ) time to reschedule the LP. Note that the tier-1 heap is updated only

if the root event in tier-2 changes after an operation. Consequently, the best

case time complexity becomes log e when compared to O (log(e · l )) for the
heap. Furthermore, cancellation of events for an anti-message is restricted to

just the tier-2 entries of LPdest (see Section 2) with utmost 1 tier-1 operation

to update schedule position of LPdest . A std::vector is used as the backing

storage for both tiers and standard algorithms are used to maintain the

min-heap property for both tiers after each operation.

4.3 2-tier Fibonacci Heap (fibHeap)
The fibHeap is an extension to the previous 2tHeap data structure and uses a Fibonacci heap for

scheduling LPs. The Fibonacci heap is a modified version of the boost C++ library. The Fibonacci

heap has an amortized constant time for changing key values and finding a minimum. Consequently,

we use it for the first tier which is responsible for scheduling LPs and use a standard binary heap

for the second tier. We do not use the Fibonacci heap for the second tier because we found its

runtime constants to be higher than a binary heap. Accordingly, the time complexity for enqueue

and dequeue operations is O (log(e ) + 1).

4.4 Three-tier Heap (3tHeap)
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Fig. 3. 3-tier Heap (3tHeap)

The 3tHeap builds upon 2tHeap by further subdividing the second

tier into two tiers as shown in Figure 3. The binary heap implemen-

tation for the first tier that manages LPs for scheduling has been

retained from 2tHeap. However, the 2nd tier is implemented as a

list of containers sorted based on receive time of events. Each tier-2

container has a 3rd tier list of concurrent events. Assuming each LP

has c concurrent events on an average, there are
e
c tier-2 entries with

each one having c pending events. Algorithm 1 shows the key steps to

enqueue an event. Inserting events in the 3tHeap is accomplished via

binary search at tier-2 with time complexityO (log e
c ) followed by an append to tier-3, an amortized

constant time operation. Enqueue to tier-2 is followed by an optional heap fix-up to maintain LP

with least timestap at top of heap. The heap fix-up has time complexity O (log l ) as summarized in

Table 2. Dequeue operation for a LP removes a tier-2 entry in constant time followed by a O (log l )
heap fix-up for scheduling. Event cancellation has time complexity of O (e + log l ) as it requires
inspecting each event in tier-3 followed by heap fix-up. As an implementation optimization, we

recycle tier-2 containers to reduce allocation and deallocation overhead. Our experiments suggest

that recycling tier-2 containers is an important implementation detail necessary for reducing the

runtime constants associated with 3tHeap.

4.5 LadderQueue (ladderQ)
The ladderQ is a priority queue implementation proposed by Tang et al [18] with amortized

constant time complexity as summarized in Table 2. Several investigators have independently

verified that for sequential Discrete Event Simulation (DES) the ladderQ outperforms other priority

queues, including: simple sorted list, binary heap, Splay tree, Calendar queue, and other multi-list

data structures [4, 5, 18]. There are two key ideas underlying the Ladder Queue, namely: ① minimize

the number of events to be sorted and ② delay sorting of events as much as possible. The multi-tier
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data structures also aim to minimize the number of events to be sorted. However, in contrast to the

ladderQ, the other data structures always fix-up and maintain a minimum heap property.

ALGORITHM 1: 3tHeap enqueue

Input: event to be added to the 3tHeap

Output: Event inserted in 2nd-tier. 1st-tier heap updated to

maintain LTSF at top of heap

r ecvr = agentList[event->receiver];
currT ime = minTime(r ecvr ->tier2);
/* Do binary search & find tier-2 bucket */

iter = lower_bound(r ecvr ->tier2, event->timestamp);

if iter == r ecvr ->tier2.end() then
t2Bkt = getRecycledBucket(); t2Bkt .append(event);
r ecvr ->tier2.append(t2Bkt );

else
if *iter ->timestamp == event->timestamp then

(*iter )->append(event);
else

t2Bkt = getRecycledBucket(); t2Bkt .append(event);
r ecvr ->tier2.insert(iter, t2Bkt )

end
end
if currT ime != minTime(r ecvr ->tier2) then

fixHeap(r ecvr )
end

The ladder queue consists of the following

3 substructures:

(1) Top: An unsorted list which contains

events scheduled into the distant future

or epoch.

(2) Ladder : Consists of multiple rungs, i.e., list
of buckets. Each bucket contains events

with a finite range of timestamp values.

Hence, although events within a bucket

are not sorted, the buckets on a rung are

organized in a sorted order. The ladderQ
minimizes the number of events to be fi-

nally sorted by recursively breaking buck-

ets into a smaller range of timestamp val-

ues.

(3) Bottom: This substructure contains a

sorted list of events to be processed. In-

serts into Bottom must preserve sorted or-

der. Hence, the ladderQ strives to main-

tain a short bottom by moving events back

into the ladder, as needed [18].
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memory for PHOLD benchmark (different param-
eter settings) for 6 different ladderQ implementa-
tions.

4.5.1 Fine tuning Ladder Queue performance.
Our implementation closely followed the design

in the original paper by Tang et al [18]. However,
to minimize runtime constants, we have explored

different configurations for the buckets and the Bot-
tom in the ladderQ. Specifically, we have explored
the following 6 configurations – ❶ L.List-L.List: us-

ing a doubly-linked list (L.List) implemented by

std::list) for buckets and bottom. Events are in-

serted into bottom via linear search as proposed

by Tang et al. ❷ L.List-M.Set: L.List for buckets

and a Multi-set (O (logn) operations) for bottom, ❸
L.List-Heap: a L.List and a binary heap (backed by a

std::vector) for bottom, ❹ Vec-M.Set: a dynami-

cally growing array (i.e., std::vector) for buckets
and Multi-set bottom, ❺ Vec-Heap: Vector buckets

and binary heap for bottom, and ❻ Vec-Vec: Vector

for buckets and bottom. This configuration enables

using quick sort (i.e., std::sort) for sorting buckets and binary search for inserting events into

bottom.

Runtime comparison of the 6 ladderQ configurations is summarized in Figure 4. The data was

obtained using PHOLD with different parameter settings. The ❻th
Vec-Vec configuration was

the fastest and performance of other configurations are shown relative to it in Figure 4(a). The

L.List-L.List configuration was generally the slowest and performed 85× (or 98%) slower than
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the Vec-Vec configuration. The peak memory used for simulations is shown in Figure 4(b), in

comparison with the Vec-Vec configuration. As shown by the charts in Figure 4, the increased

performance of Vec-Vec comes at about a 6× increase in peak memory footprint when compared

to L.List-L.List configuration. This increased footprint arises because the std::vector internally
doubles its capacity as it grows. With many buckets in the ladderQ, each implemented using a

std::vector, the overall peak memory footprint is higher. Certainly, the increased capacity is used

if the number of events in buckets grows. However, the Vec-M.Set and Vec-Heap configurations

consume a bit more memory in some configurations, showing that Vec-Vec is not the worst in

memory consumption. Consequently, we use the Vec-Vec configuration as it provides the fastest

performance among the 6 configurations.
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The maximum number of rungs in the

Ladder also influences the overall perfor-
mance of the ladderQ [18]. The chart in

Figure 5 illustrates the impact of limit-

ing the maximum number of rungs in the

ladderQ. This experiment was conducted

using using PHOLD simulation involving

10,000 agents (model ph4 in Table 3).When

the rungs are too few, the timestamp-based

width of buckets is larger and more events with many different timestamps are packed into buckets.

This also causes the Bottom to be longer with events spanning a broader range of timestamps. Con-

sequently, when inserts happen into Bottom, many Bottom-to-Ladder re-bucketing operations are

triggered to ensure bottom is short. These re-bucketing operations with many events significantly

degrade performance. However, once sufficient number of rungs (6 rungs in this case) are permitted

the events are better subdivided into smaller timestamp-based bucket widths. Small bucket widths

in turn minimize inserts into bottom and Bottom-to-Ladder operations, ensuring good performance.

The chart in Figure 5 shows that a minimum of 6 rungs is required. For some select configurations

of largermodels we observed (data not shown) that 5 rungswould be sufficient. However, the number

of rungs cannot exceed beyond a threshold to avoid infinite spawning of rungs [18]. Moreover, it

limits the overheads involved in re-bucketing events from rung-to-rung [18]. Accordingly, based

on the observations in Figure 5, we decided to adopt a maximum of 8 rungs, consistent with the

threshold proposed by Tang et al [18]. Furthermore, we trigger Bottom-to-Ladder re-bucketing only
if the Bottom has events with different timestamps to further reduce inefficiencies.

4.5.2 Shortcoming of LadderQueue for optimistic PDES. The amortized constant time complexity

of enqueue and dequeue operations enable the ladderQ to outperform other data structures in

sequential simulations [4, 5, 18]. However, canceling events requires a linear scan of pending events

because Top and buckets in rungs are not sorted. In practice, scans of Top, Ladder rung buckets,

and Bottom can be avoided based on cancellation times. Nevertheless, in a general case, event

cancellation time complexity is proportional to the number of pending events – i.e., O (e · l ) as
summarized in Table 2. This issue is exacerbated in large simulations where thousands of events

are typically present in Top and buckets in various rungs.

In this context, it is important to recollect from Section 2 that – as an optimization, MUSE utilizes

only one anti-message to from LPsender to LPdest to cancel alln events sent after trollback (rather than
sending n individual anti-messages) which reduces overheads. Furthermore, with our centralized

scheduler design, only events received from LPs on other MPI-processes can trigger rollbacks.

Consequently, the number of scans of the ladderQ that actually occur is significantly fewer in our

case, despite the aggressive cancellation strategy.
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4.6 2-tier LadderQueue (2tLadderQ)
A key shortcoming of the Ladder Queue for Time Warp based optimistic PDES arises from the

overhead of canceling events used for rollback recovery. Our experiments showed that event

cancellation overhead of ladderQ is a significant bottleneck in parallel simulation. On the other

hand, our multi-tier data structures, where pending events are more organized, performed well.
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Fig. 6. 2-tier LadderQueue (2tLadderQ)
with 3 sub-buckets / bucket (i.e., t2k=3)

Consequently, to reduce the cost of event cancellation, we

propose a 2-tier Ladder Queue (2tLadderQ) in which each

bucket in Top and Ladder is further subdivided into t2k sub-

buckets, where t2k is specified by the user. Figure 6 illustrates

an overview of the 2tLadderQ with t2k = 3 sub-buckets in

each bucket. Given a bucket, a hash of the sending LP’s ID

(or the receiver LP ID, one or the other but not both) is used

to locate a sub-bucket into which the event is appended.

Currently, we use a straightforward LPsender modulo t2k as

the hash function. Consequently, enqueue involves just 1

extra modulo instruction over regular ladderQ and hence

retains its amortized constant time complexity. Similar to buckets, the sub-buckets are implemented

using standard std::vector with events added or removed only from the end to ensure amortized

constant-time operation.

The dequeue operations for a bucket require iterating over each sub-bucket. However, for a

small, fixed value of t2k , the overhead becomes an amortized constant. The constant overhead

is determined by the value of t2k . Consequently, dequeue also retains the amortized constant

characteristic from regular ladderQ as summarized in Table 2. Currently, we do not subdivide

Bottom but leave it as a possible future optimization.

4.7 Performance gain of 2tLadderQ
The primary performance gain for 2tLadderQ arises from the reduced time complexity for event

cancellation. Since each bucket is sub-divided, only 1÷t2k fraction of events need to be checked

during cancellation. For example, if t2k=32, only
1

32
of the pending events are scanned during

cancellation. This significantly reduces the time constants in larger simulations enabling rapid

rollback recovery.
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The value of t2k is a key parameter that influ-

ences the overall constants in 2tLadderQ. For se-
quential simulation, where event cancellations do

not occur, we recommend t2k=1. With this setting,

the performance of 2tLadderQ is very close to that

of the regular ladderQ. However, in parallel sim-

ulation, the value of t2k must be greater than 1 to

realize benefits of its design. Figure 7 shows the effect of changing the size of t2k in a parallel

PHOLD simulation involving 10,000 agents (model ph4 in Table 3) using 16 MPI processes. The total

rollbacks in the simulations were with 10% (except for t2k=512, which for this model experienced

fewer rollbacks). Nevertheless, for t2k=1, the simulation has much higher runtime due to event can-

cellation overheads. The runtime dramatically decreases as t2k is increased. The runtime remains

comparable for a broad range of values, namely: 64≤t2k<512. However, for t2k≥512, we noticed
a slow increase in runtime due to overhead of larger sub-buckets. This trend was consistent for

the three models used in this study. Consequently, we have used a value of t2k = 128 for parallel

simulation, which serves as a conservative upper-bound value.
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4.7.1 Re-bucketing rungs. In model with large variations in timestamps such as the AIM (see

Section 3.3), we observed that some rungs of the ladderQ can grow to have a large number (>10,000)

of sparsely populated buckets. This causes a significant increase in memory usage. In order to

circumvent this issue, we have introduced re-bucketing of rungs in 2tLadderQ. Re-bucketing
computes a new, larger range of timestamp values for each bucket such that the number of buckets

in a given rung does not exceed a fixed threshold. In our implementation we have used the bucket

threshold of 50 that was proposed by Tang et al [18]. Next, events are redistributed to the new

buckets. In our experiments, we observed that re-bucketing is a rare occurrence and was only

observed to occur a few times with the AIM. Nevertheless, as discussed in Section 7.4, re-bucketing

decreases peak memory usage by 5× when simulating AIM.

5 RELATEDWORK
This paper proposes and explores multi-tier data structures for managing the pending event set

in sequential and optimistic parallel simulations. Specifically, we compare the effectiveness of the

data structures against our fine-tuned version of the Ladder Queue [18] because it has shown to

be very efficient for sequential Discrete Event Simulation (DES). Recently, Franceschini et al [5]
compared several priority-queue based event list data structures to evaluate their performance in

the context of sequential DEVS simulations. They found that the Ladder Queue outperformed every

other priority queue based event lists data structure such as Sorted List, Minimal List, Binary Heap,

Splay Tree, and Calendar Queue. We refer readers to the work by Tang et al [18] and Franceschini

et al [5] for comparative discussion on the different data structures. They both use the classic Hold

benchmark used in this study.

In contrast to earlier work, rather than using a linked list based implementation, we propose

alternative implementation using dynamically growing arrays (i.e., std::vector). Furthermore,

we trigger Bottom to Ladder re-bucketing only if the Bottom has events with different timestamps to

reduce inefficiencies. Our 2-tier Ladder Queue (2tLadderQ) is a novel enhancement to the Ladder

Queue to enable its efficient use in optimistic parallel simulations.

Dahl et al [3] propose an append-queue data structure for pending event set management.

Append-queue maintains a list of sorted events for each LP in a sender-queue, with each LP having

a separate sender-queue. For scheduling, a separate schedule-list is used to maintain a sorted list

of head’s of each sender-queue. This structure is comparable to our 2-tier heap implementation,

except we maintain binary heaps in the two tiers versus sorted lists as proposed by Dhal et al [3].
Dickman et al [4] compare event list data structures that consisted of Splay Tree, STL Multiset

and Ladder Queue. However, the focus of their paper was in developing a framework for handling

event list data structures in shared memory PDES. A central component of their study was the

identification of an appropriate data structure and design for the shared event list. Gupta et al [6]
extended their implementation of Ladder Queue for shared memory Time Warp based simulation

environment so that it supports lock-free access to events in the shared event lists. The modification

involved the use of an unsorted lock-free queue in the underlying ladder queue structure. Hay and

Wilsey [8] explore the effectiveness of using hardware-based transaction memory (TSX) to manage

pending events in their optimistic parallel simulator. They explore two variants of TSX, namely

Hardware Lock Elision (HLE) and Restricted Transactional Memory (RTM). Their experiments

conducted using a multi-set data structure shows that HLE outperforms conventional locking

mechanisms by up to 27%.

Quaglia [14] proposes a Low-Overhead Constant-Time (LOCT) scheduler that uses tree-like

bitmaps which enables quick retrieval of events to be scheduled in a TimeWarp simulator. Quaglia’s

experiments on multithreaded, shared memory architecture show that the LOCT scheduler can

outperform ladder queue. However, the ladder queue realizes a better overall efficiency than LOCT
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because it throttles optimism due to its higher queue management costs [14]. Marotta et al [11, 12]
have contributed to the study of event list data structures in threaded PDES through the design

of the Non-Blocking Priority Queue (NBPQ) data structure. An event list data structure that is

closely related to Calendar Queues with constant time performance. They further extend their data

structure by introducing conflict-resiliency to alleviate overhead of concurrent extractions from

the bucket with lowest time stamp events [13].

In contrast to aforementioned efforts, this paper focuses on distributed memory platforms in

which each parallel process is single threaded. Consequently, our implementation does not involve

thread synchronization issues. To the best of our knowledge, at the time of this paper, the Fibonacci

heap (fibHeap) and our 3-tier Heap (3tHeap) are unique data structures that have potential to be

effective in simulations with high concurrency.

6 PARAMETER REDUCTION VIA GENERALIZED SENSITIVITY ANALYSIS (GSA)
Our initial experimental analysis focused on performance comparison of different scheduler queues

using PHOLD and PCS benchmarks. However, our initial experiments proved to be cumbersome and

time-consuming due to the large number of parameters (for example, see Table 1) and combinations

of their values. Consequently, we pursued strategies to focus onmost influential subset of parameters

that impacted relative performance of the scheduler queues using Generalized Sensitivity Analysis

(GSA) [7]. GSA is based on two-sample Kolmogorov-Smirnov Test (KS-Test) and yields a dm,n
statistic that is sensitive to differences in both central tendency and differences in the distribution

functions of parameters [7]. The dm,n statistic is the maximum separation between cumulative

probability distribution observed in a two-sample KS-Test.

In our experiments, the KS-Test has been performed for each pair of queues being compared using

data from Monte Carlo simulations involving 2,500 different combinations of parameter values

generated from a specified range. The combination of values is generated using Sobol random

numbers to provide uniform coverage of the multidimensional parameter space. Each combination

of parameters is used to conduct simulations. The simulation results are then classified into number

of “success” (m) or its converse “failure” (n) to compute cumulative probability distribution and

dm,n statistic for each parameter. In this study, we have defined “failure” to be parameter values

for which the ladderQ runs slower when compared to another scheduler queue. For sequential

and parallel simulations we use t2k=1 and t2k=128 respectively. Our parameter ranges also ensure

that the peak memory consumption does not cross NUMA threshold (which in our case is 4 GB of

RAM) as it introduces a lot of variance in runtimes requiring too many runs to reduce variance

to acceptable limits. The results from sequential and parallel GSA are discussed in the following

subsections.

6.1 PHOLD GSA results
The results from sequential GSA analysis for ladderQ vs. 3tHeap conducted using the PHOLD

benchmark with different parameter settings and 9 different combinations of statistical distributions

is shown in Figure 8. The 9 combinations correspond to the distributions used for event timestamps

and receiver LP ids – i.e., delay-distrib and recvr-distrib in Table 1. The error bars show the

95% Confidence Intervals (CI) computed using standard bootstrap approach using 5000 replications

with 1000 samples in each.

The parallel simulations were conducted using 4 MPI-processes for parallel simulation. These

analysis focused only on ladderQ, 2tLadderQ, and 3tHeap as they generally outperformed all other

queues in our earlier sequential GSA analyses. Initially, we observed that the ladderQ timings

showed a lot of variance in runtime depending on the number of rollbacks that occur in parallel

simulation. Consequently, to reduce variance, we have used a time-window of 10 time-units to
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reduce rollbacks as elaborated further in Section 7.2.1. We use the same time-window for all

scheduler queues for consistent comparison and analysis.
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Fig. 8. Results from GSA of PHOLD parallel simulations
for different event timestamp & receiver distributions Box
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paired T-tests.

As illustrated by the charts in Figure 8,

the most influential parameters that high-

light difference in performance between

ladderQ and 3tHeap are: ① eventsPerLP
(E/LP) which influences the number of con-

current events (i.e., events with same times-

tamp) to be processes by an LP in each

cycle; and ② λ, the event timestamp dis-

tribution parameter that determines how

close (or far) the timestamp values are to

increase (or decrease) probability of con-

current events. The data also shows that

conspicuous imbalance in partitioning or

load balance has some influence on the

outcomes. However, in this study, we ex-

plore typical parallel simulation scenarios

in which load is reasonably well balanced.

Remaining parameters, namely: GVT pe-

riod (GVT), % self events (%SE), simulation

end time (Time), and event granularity

(Gran.) do not have a strong influence on

explaining the performance difference be-

tween ladderQ and 3tHeap. Similar GSA

results were also observed for sequential simulation.

We have also conducted GSA with ladderQ vs. 2tLadderQ. Our data show that these two queues

have comparable performance in sequential simulations, with ladderQ slightly outperforming

the 2tLadderQ due to the extra hashing operation implemented using modulo operation. We

have also conducted GSA to determine influential parameters impacting the performance of other

scheduler queues versus the ladderQ in sequential simulations. Our analysis showed that none of

the parameters play an influential role and the ladderQ generally performed consistently better or

the same.

6.2 PHOLD GSA summary & configurations for further analysis
GSA shows that for comparing event queue performance in sequential and parallel simulations

using PHOLD benchmark, the experiments need to focus on 2 parameters, namely: eventsPerLP,
and λ. Other aspects such as: model size, event granularity, fraction of self-events, GVT rate, etc.,

are not influential for performance comparisons of scheduler queues. The exponential distributions

are a better setting for analysis as they provide statistically significant results with a reduced

parameter space. In addition, exponential distribution patterns have been widely reported and used

in the literature for performance analyses [5, 18]. Moreover, the scheduler queues to focus further

analysis are: ladderQ, 2tLadderQ, and 3tHeap.

6.2.1 PHOLD configurations for further analysis. GSA enables identification of influential param-

eters, thereby substantially reducing the parameter space. However, GSA data does not provide an

effective data set to analyze trends, such as: scalability, memory usage, rollback behaviors, etc. In

order to pursue such analysis, we have used 3 different PHOLD configurations called ph3, ph4, and
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Table 3. PHOLD configurations for further analysis

Name #LPs Sim. End Time

(Rows×Cols) Seq Parallel

ph3 1,000 (100×10) 5000 20000

ph4 10,000 (100×100) 500 5000

ph5 100,000 (1000×100) 100 1000

ph5. The fixed characteristics for the 3 config-

urations with non-influential parameters are

summarized in Table 3. We use larger simula-

tion end times for parallel simulation so ob-

tain sufficiently long runtimes using 32 cores.

The value of influential parameters, namely:

eventsPerLP, %selfEvents, and λ is varied

for comparing different settings, similar to the

approach used by other investigators [5, 18].

6.3 PCS benchmark GSA results
We have conducted GSA analysis using the PCS benchmark using the same analysis procedure

discussed earlier in this section. We have explored the multidimensional parameter space of PCS

benchmark using 2,500 different combinations. The GSA analysis showed that for both sequential

and parallel PCS simulations, the most influential parameter to explain performance differences

of the queues is the number of portables initially assigned to each cell. The portables parameter

determines the net number of events in the simulation because lifecycle of a portable is modeled

using an event, as discussed in Section 3.2. The number of events in turn influence the performance

of the priority queues used to manage pending events. Other parameters do not play a significant

role in influencing the relative performance differences. Accordingly, our PCS-based experimental

analyses have been conducted by varying the number of portables in a 1,000 cells (100×10) network

while retaining default values [1] for all other parameters.

7 EXPERIMENTS & DISCUSSIONS
Assessments of the effectiveness of the six scheduler queues from Section 4 have been conducted

using different configurations of the PHOLD, the PCS benchmark, and Avian Influenza Epidemic

Model (AIM) discussed in Section 3. The experiments were conducted on RedHawk and Oakley

compute clusters described in Section 2.1.

7.1 PHOLD sequential simulation results
We pursued sequential simulations to compare the base case performance of the data structures,

reflecting analyses reported by other investigators [5, 18]. The sequential simulations also serve as

a reference for potential use in conservatively synchronized PDES. The sequential experiments

were conducted using the 3 PHOLD configurations from Table 3. The simulations were run in

sequential mode (i.e., no state saving, rollbacks, GVT, etc.) on one compute node. The software was

compiled at -O3 optimization level with all debug assertions compiled out via compiler flags. The

number of sub-buckets in 2tLadderQ was set to 1, i.e., t2k=1. For these experiments, the influential

parameters eventsPerLP and λ identified via GSA analysis (see Section 6.2) were varied to explore

their impact on the relative performance of the data structures. For each configuration, data from

10 independent replications were collected and analyzed.

The charts in Figure 9(a)–(c) show change in runtime characteristics as the most influential pa-

rameter eventsPerLP is varied, for λ=1 (widest range of timestamps) and %selfEvents = 0.25. This

configuration was generally the best for ladderQ. As illustrated in Figure 9(a)–(c), the performance

of ladderQ and 2tLadderQ (t2k=1) is comparable as expected. These two queues outperform the

other queues for lower values of eventsPerLP.
However, the 3tHeap outperforms the other queues for higher values of eventsPerLP. The

trends were consistent on both RedHawk and Oakley clusters. In all cases, there were no inserts

into Bottom or Bottom-to-Ladder operations (discussed in Section 4.5.1) that could degrade ladderQ
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Fig. 9. Sequential simulation runtimes from PHOLD with λ=1 (exponential distribution) and %self events=0.25

performance. The size of the Bottom rung was proportional to the number of LPs and eventsPerLP
– i.e., with larger models, Bottom has more events for many LPs with the same timestamp to be

scheduled. In the larger configurations, the maximum of 8 rungs was fully used. The maximum

rung threshold of 8 was determined to be an effective setting as discussed in Section 4.5.1 and the

same value proposed by Tang et al [18]. Profiler data showed that the bottleneck in ladderQ arises

from the overhead of re-bucketing events from rung-to-rung of the Ladder. On the other hand, in

3tHeap re-bucketing does not occur. Consequently, the overheads of O(log e
c ) operations in 3tHeap

are amortized as the number of concurrent events c increases.

7.1.1 Peak memory usage. The charts in Figure 10 shows the peak memory usage and observed

cache misses corresponding to the runtime data in Figure 9. The memory size reported is the

“Maximum resident set size” value reported by GNU /usr/bin/time command on Linux. The

memory usage of heap is the lowest in most cases. Since t2k=1, the memory usage of ladderQ
and 2tLadderQ is comparable as expected. The 3tHeap initially uses more memory than the

other data structures because of many small std::vectors and due to std::vector doubling its

capacity. However, the memory usage is amortized as the eventsPerLP increases. Consequently,
the improved performance of 3tHeap over ladderQ is realized without a significant increase in

memory footprint.
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Fig. 10. Comparison of peak memory usage and cache misses corresponding to Figure 9(a)–(b)

7.1.2 Caching characteristics. The L3 cache misses were recorded using Linux perf utility on

RedHawk cluster on which the CPU has 8 MB L3-cache. The charts in Figure 10 show the average

number of cache misses per event – i.e., “total number cache misses” ÷ “total number of events”.

As illustrated by the charts, the cache misses for the different data structures is comparable with

3tHeap having a slightly better cache performance only for the larger ph4 case. Since overall the
caching characteristics are comparable, we can also eliminate caching as an influential parameter.

Consequently, the performance differences observed in Figure 9 is attributed to the inherent design

of these data structures.
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Fig. 11. Statistics from parallel simulation on RedHawk with eventsPerLP=2, λ = 1, %selfEvents=25%

7.2 PHOLD Parallel simulation assessments
The parallel simulation experiments were conducted on the two compute clusters (see Section 2.1)

using a varying number of MPI-processes, with one process per CPU-core. In order to ensure

sufficiently long runtimes with 32-cores, we increased simEndTime for parallel simulations as

tabulated in Table 3. The following subsections discuss results from the experiments.

7.2.1 Throttling optimism with a time-window. During our initial experimentation with PHOLD,

we noticed that the ladderQ had a large variance in runtimes, particularly when it experienced

many rollbacks. In several cases, cascading rollbacks significantly slowed the simulations – i.e.,
ladderQ simulations required over 1 hour while 2tLadderQ would consistently finish in a few

minutes. In order to avoid large variances due to cascading rollback scenarios for ladderQ and to

streamline experimental analysis time frames (otherwise we would have to run 100s of replications

for each configuration to reduce variance) we have throttled optimism using a time-window of

10 time-units. The time-window restricts the simulation kernel from optimistically processing

events that are more than 10 time-units ahead of GVT – i.e., the kernel spins (without optimistically

processing pending events but performing other operations) waiting for GVT to advance. The

time-window value of 10 is 50% of the maximum timestamp of events generated by an exponential

distribution with λ = 1. Hence, most events in current schedule cycle will fit within this time-

window. We use the same time-window for all scheduler queues for consistent comparison and

analysis.

7.2.2 Efficient case for ladderQ. The charts in Figure 11 show key simulation statistics for a

low value of eventsPerLP = 2 and λ=1 for which ladderQ performed well, consistent with the

observations in sequential simulations. The charts show averages and 95% CI computed from

10 independent replications for each data point. As illustrated by the data in Figure 11, both the

ladderQ and 2tLadderQ perform well for all three models. The charts in Figure 12 shows the

observations on Oakley cluster. The performance trends of all of the runs on RedHawk and Oakley

were similar, with Oakley having a faster runtime when compared to RedHawk. Other than the

raw timing differences, the trends and behaviors were consistent establishing that the performance

characteristics of the queues are consistently reproducible.

In these configuration, overall the ladderQ experienced the fewest rollbacks. The 2tLadderQ
continues to perform well despite experiencing more rollbacks as shown in Figure 11(b). The good

performance of 2tLadderQ under heavy rollback is consistent with its design objective to enable

rapid event cancellation and improve rollback recovery. The maximum of 8 rungs on the ladder

was reached in all the simulations, but with only a few (1 to 3) buckets per rung. On average, the

number of Bottom to Ladder operations (that degrade performance) were low per MPI process,

about – ph3: {9144, 8911}, ph4: {1904, 1448}, and ph5: {53, 84} for {ladderQ, 2tLadderQ} respectively.
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ure 11(b)) on Oakley

In this configuration, the 3tHeap runs experienced a lot

of rollbacks when compared to the other two queues despite

the time-window. For ph5 data in Figure 11(c), 3tHeap expe-

rienced about 114805 rollbacks on average while ladderQ
experienced only 2341, almost 50×more rollbacks. Conse-

quently, it was slower than the other 2 queues, but its per-

formance is not significantly degraded – 1.5× slower despite

50× more rollbacks. The peak memory usage for all the 3

queues were comparable in these configurations.

7.2.3 Knee point for 3tHeap vs. ladderQ. The charts in Figure 13 show key simulation statistics

for the configuration where 3tHeap and ladderQ performed about the same in sequential (see

Figure 9). For ph3, both ladderQ and 2tLadderQ experienced a comparable number of rollbacks

but the 2tLadderQ performs better due to its design advantages. In the case of ph4 and ph5, both
the ladderQ and 3tHeap experienced a comparable number of rollbacks, but much higher than the

2tLadderQ despite having a time-window. Nevertheless, the 3tHeap conspicuously outperforms

the ladderQ because it is able to quickly cancel events and complete rollback processing. For ph5,
the 3tHeap outperforms the other 2 queues despite the high number of rollbacks. The peak memory

usage for all the 3 queues was comparable in these configurations.
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Fig. 13. Statistics from parallel simulation on RedHawk with eventsPerLP=10, λ = 10, %selfEvents=25%

7.2.4 Best case for 3tHeap. Figure 14 shows simulation time and rollback characteristics in

high concurrency configuration with ph5, with eventsPerAgent=20, λ=10, and %Self Evt.=25%.
Consistent with all the PHOLD parallel runs, a time-window of 10 time-units has been used for

these runs as well. Nevertheless, on RedHawk, ladderQ runs exceeded 3600 seconds in most cases

even with a time-window, except for 32 processes. Consequently ladderQ experiments with fewer

than 32 processes were abandoned and data is not shown. On the other hand 2tLadderQ performed

well due to its design. The 3tHeap outperformed the other 2 queues despite experiencing 2× more

rollbacks. On Oakley that has a 40 GBPS Infiniband network, 2tLadderQ experienced a lot more

rollbacks than 3tHeap. The increased rollbacks are attributed to slower performance of 2tLadderQ
which takes much longer than 3tHeap to recover. Due to the increased number of rollbacks on

Oakley, none of the ladderQ runs finished in 2 hours even with a time-window and consequently

were abandoned. The data from Oakley cluster underscores the advantages of the 3tHeap when
simulating models with high concurrency on high speed interconnects.

7.2.5 Experiments without throttling optimism. The PHOLD experiments discussed in the previ-

ous subsections utilized throttling to enable runtime comparisons with ladderQ across different
configurations as discussed in Section 7.2.1. In contrast, this section discusses results from exper-

iments conducted without the use of throttling. The charts in Figure 15 show runtime statistics

from parallel simulations that did not throttle optimism. The experiments were conducted on
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Fig. 14. Statistics from parallel simulation with ph5 with eventsPerLP=20, λ = 10, %selfEvents=25%
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Fig. 15. Parallel simulations without throttling conducted on Oakley using different settings for ph4

Oakley cluster using different settings of ph4 model. The charts in Figure 15(a) correspond to the

low concurrency configuration, but throttled data shown in Figure 12. The runtimes for the three

queues are consistent as excepted. The slight increase in variance for ladderQ is also expected

because variance in rollbacks is amplified due to cancellation overheads. In continuation with earlier

discussions (see Section 7.2.1), the charts in Figure 15(b) and Figure 15(c) do not include plots for

ladderQ because the runs exceeded 3600 seconds and were abandoned. The experimental results

show that the 3tHeap outperforms the 2tLadderQ in configurations with higher concurrency, as

expected, despite experiencing slightly higher number of rollbacks.

7.3 Personal Communication Service (PCS) sequential & parallel simulation results
The Generalized Sensitivity Analysis (GSA) for PCS model discussed in Section 6.3 established

that the number of portables is the most influential parameter to explain performance differences

between scheduler queues. Accordingly, our PCS-based experimental analyses have been conducted

by varying the number of portables in a 1,000 cells (100×10) network while retaining default

values [1] for all other parameters. For each configuration, data from 10 independent replications

were collected and analyzed on both RedHawk and Oakley clusters. Note that for PCS simulation

time-window based throttling was not necessary.

The charts in Figure 16 illustrate the runtime characteristics observed for sequential simulations

on both RedHawk and Oakley. As expected, the performance of the ladderQ and 2tLadderQ is

comparable in sequential simulations. In the case of PCS simulations, the 3tHeap significantly

outperformed both the 2tLadderQ and the ladderQ. For example, with 125 portables (a modest

setting for this model), on RedHawk the average runtime of 3tHeap was 49.68 seconds while

ladderQ took 3088.64 seconds to finish resulting in a speedup of 62×! Corresponding runtimes

on Oakley was 59.9 seconds for 3tHeap and 3529 seconds for ladderQ resulting in a speedup of

58.9×. The performance difference is primarily due to a large number of “portables” (i.e., events)
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Fig. 16. Statistics from sequential simulations of PCS network with 1,000 cells

in the simulation, resulting in many concurrent events per “cell” (i.e., an LP in this model). As

illustrated by the charts in Figure 16(a), the performance characteristics were similar on Oakley as

well, establishing consistently reproducible results. In other words, the performance differences

are not based on hardware or compiler but purely attributed to the design of the data structures.

Moreover, as illustrated by the charts in Figure 16(b), the memory consumption of the queues are

comparable, with the 3tHeap having a slightly lower peak memory footprint. These experiments

exemplify the effectiveness of 3tHeap over the ladderQ in simulations with a large number of

concurrent events.

The charts in Figure 17 show key runtime statistics from parallel simulations conducted on both

RedHawk and Oakley using 1,000 (100×10) cells (i.e., LPs), with 100 portables per cell (i.e., 100
events per LP). This configuration was chosen to provide some load for 3tHeap with 32-processes

(and yet runtime is < 4 seconds). The charts in Figure 17(a) illustrate similar runtime trends on

both clusters with 3tHeap outperforming the other queues, consistent with sequential simulation

observations. However, the rollback patterns on RedHawk and Oakley were different because of

the differences in interconnect technologies. The number of rollbacks on Oakley were lower when

compared to RedHawk which is attributed to faster interconnects. Overall the PCS model had much

fewer rollbacks than PHOLD, and consequently, both the ladderQ and 2tLadderQ had about the

same performance. The memory usage for the different queues was comparable. Importantly, the

results add further credence that the performance differences between the queues are reproducible

and platform-independent as they are attributed purely to the design of the data structures.

 1

 10

 100

 1000

 2 4  8  16  32

R
u
n
 t
im

e
 (
s
e
c
)

# Parallel processes

pcs7: Runtime

(l
o
g
 s
c
a
le
)

3tHeap
2tLadderQ

ladderQ

RedHawk

 1

 10

 100

 1000

 2 4  8  16  32

R
u
n
 t

im
e
 (

se
c)

# Parallel processes

pcs7: Runtime

(l
o
g
 s

ca
le

)

3tHeap
2tLadderQ

ladderQ

Oakley

(a) PCS run times

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 2 4  8  16  32

M
a
x
 r
o
ll
b
a
c
k
 (
m
il
li
o
n
s
)

# Parallel processes

pcs7: Rollbacks

3tHeap
2tLadderQ

ladderQ

RedHawk

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 2 4  8  16  32

M
a
x
 r

o
ll
b
a
ck

 (
m

il
li
o
n
s)

# Parallel processes

pcs7: Rollbacks

3tHeap
2tLadderQ

ladderQ

Oakley

(b) PCS rollbacks

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2  4  8  16  32

P
e
a
k
 m

e
m
o
ry
 u
s
e
d
 (
M
B
)

# Parallel processes

pcs7
3tHeap

2tLadderQ
ladderQ

RedHawk

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2 4  8  16  32

P
e
a
k
 m

e
m

o
ry

 u
se

d
 (

M
B

)

# Parallel processes

pcs7
3tHeap

2tLadderQ
ladderQ

Oakley

(c) PCS peak memory use

Fig. 17. Statistics from parallel simulations of PCS network with 1,000 cells and 100 portables per cell
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7.4 Avian Influenza Epidemic Model (AIM) simulation results
The AIM introduced in Section 3.3 with 3,088 LPs modeling flocks of migratory waterfowl was

executed with a varying number of processors on RedHawk and Oakley clusters. Parallel simu-

lations used a time-window of 2419200 seconds (i.e., 28 days), that was identified as an effective

setting [16]. The charts in Figure 18 show the key runtime characteristics from 10 independent

simulation replications for the three key scheduler queues. The runtime with 1 process corresponds

to sequential simulation where all the Time Warp related operations (such as: GVT, state saving,

garbage collection, etc.) are turned off.

As illustrated by the runtime charts in Figure 18(a), all the three queues had comparable per-

formance in both sequential and parallel simulation. Performance gains of using 3tHeap in this

application is limited because of few (about 2) events per simulation cycle. This setting is comparable

to the runtime characteristics of low-concurrency PHOLD configuration shown in Figure 11. The

performance of 2tLadderQ is also not conspicuous because the simulation uses rollback-reducing

optimization [16] which significantly reduces the average number of rollbacks (< 900 per process).

Furthermore, the average pending event sizes in this model is small and overhead of event can-

cellation is not pronounced. Consequently, the performance of 2tLadderQ and the ladderQ is

comparable.
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Fig. 18. Simulation statistics for AIM on RedHawk and Oakley clusters

However, a key difference between the runtime characteristics of the queues is evident in their

memory usage. The ladderQ consumes about 5× more memory than the other two queues. The

source of the increased memory footprint arises due to the broad range of timestamp values used in

the model. Migratory phases of the model use large time steps of 86400 (i.e., 24 hours) while infection
transmission phases use very small time steps of 0.125. The wide range of timestamp values causes

the number of buckets in some of the rungs of the ladderQ become large. Particularly during

rollback phase, the number of buckets sometimes exceeds 150,000 buckets. Combined with the

minimum footprint of a std::vector object used to manage buckets, the peak memory footprint

of ladderQ becomes much higher. On the other hand with 2tLadderQ these rungs are rebucketed

to eliminate uncontrolled growth of buckets as discussed in Section 4.7.1, thereby preserving both

space and time efficiency.

8 PERFORMANCE ANALYSIS USING JAVA IMPLEMENTATION
In order to establish robustness and reproducibility of the performance characteristics, the proposed

3-tier Heap (3tHeap) and 2-tier Ladder Queue (2tLadder) have been implemented in Java. The

fine-tuned version of Ladder Queue (ladderQ) has also been implemented in Java for experimental

comparison. The Java implementation of the queues is semantically identical to their C++ counter-

parts. We have invested best efforts to maintain syntactic similarity with C++ to the maximum
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extent possible. The difference between the C++ and Java versions arise from the idiomatic imple-

mentation styles of the two languages. Moreover, we have ported the C++ implementations for

standard random number generators, namely: std::exponential_distribution, std::poisson-
_distribution, and std::uniform_distribution, to Java. We have tested to ensure that even

the pseudo-random number generation in both C++ and Java is identical – i.e., they produce exactly
the same sequence given the same seed. Supplementary materials include source code listings for

both programming languages along with a more detailed comparison of the source codes.

8.1 Characterizing rollbacks
The Java benchmark used to assess the performance of the queues is a highly customized sequential

simulation of the PHOLD benchmark discussed in Section 3.1. The benchmark embodies most of the

key characteristics of a sequential discrete event simulation, including event scheduling and event

processing, but rollbacks do not occur in sequential simulations. However, performance differences

between 2tLadderQ and ladderQ arise only with rollbacks. Consequently, the Java benchmark has

been designed to model the occurrence of rollbacks by triggering calls to cancel future pending

events. The rollback behaviors in Java have been modeled based on statistical analysis of rollback

profiles recorded from actual parallel simulations of the PHOLD benchmark on 6 processes using

exponential distributions. Specifically, we have analyzed number of “inter-rollback schedules” – i.e.,
how many schedules cycles of event processing are completed before a rollback occurs. Note that

each schedule involves an LP processing 1 or more concurrent events (i.e., events with the same

timestamp). The chart in Figure 19 shows a histogram of average inter-rollback schedules from 5

independent simulations using 6 processes (more details in supplements). Rollbacks occurred at the

communication boundaries between the 6 processes, with the 7
th
region arising due to toroidal (i.e.,

wraparound) grid used in PHOLD. The frequency of occurrences has been color coded. As illustrated

by the chart in Figure 19, a majority of the inter-rollback schedules were of zero length, with longer

inter-rollback schedules decreasing exponentially. The observation is typical for rollbacks because:

① they typically happen in the near future, and ② one rollback triggers a series of rollbacks on

adjacent LPs to which they have optimistically scheduled events.
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Fig. 19. Histogram of average inter-rollback schedules from 5 independent parallel simulations of PHOLD
benchmark using 6 parallel processes. LPs with zero rollbacks are not shown. Full data and analysis is included
in supplementary materials.

The inter-rollback schedule histograms have been fit to statistical distributions to ease characteri-

zation of rollbacks in our sequential Java benchmark. Fitting statistical distributions to the observed

data has been conducted using R version 3.2.1 and the fitdistrplus package. We analyzed several

different statistical distributions, including: Exponential, Poisson, Negative binomial, Geometric,

Normal, Uniform, and Weibull. Among the standard distributions, the Geometric, Exponential,

and Poisson distributions were the only ones that provided sufficiently low Standard Error (SE)
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among the various fits. We have used these three distributions for further statistical analyses.

Figure 20 illustrates an example of fitting the rollback profile. The geometric (SE = 0.0014) and

exponential (SE=0.0015) distributions are a good fit, with geometric distribution having a slightly

lower Standard Error (SE). The Q-Q plots also show good agreement between the empirical and

theoretical quantiles verifying the statistical fit.
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Fig. 20. Example statistical fit to inter-rollback sched-
ule profile

8.1.1 Autocorrelation Analysis. A critical

first step to statistical analysis is to establish

independence of samples – i.e., validate part of
the assumption that inter-rollback schedules are

Independent and Identically Distributed (IID).

Accordingly, prior to statistical fitting, we have

used standard Autocorrelation Function (ACF)

to verify that the inter-rollback schedule occur-

rences are independent and do not have any

inherent correlation between them. Autocor-

relation is computed by sliding the sequence

of inter-rollback schedules, 1 at a time (i.e., lag
of 1), and comparing them against the original

sequence to compute the Pearson correlation

coefficient. Independence of the rollback occur-

rences is established by comparing the corre-

lation coefficients against an 95% significance

(α = 0.05) ACF threshold computed as ±2/
√
N ,

where N is the number of observations. This

standard method is based on the statistical infer-

ence that — if a time series is completely random,

and the sample size is large, the lagged-correlation coefficient is approximately normally distributed

with mean 0 and variance
1

N .

The gray dots in Figure 21 shows a summary of the ACF values for the various agents that

experienced rollbacks. As illustrated by the chart, formost of the agents, their rollback characteristics

do not have much autocorrelation with ACF values above 80%. However, some of the rollbacks do

show stronger correlations due to two reasons – ❶ there were very few rollbacks for some of the

agents causing them to be outliers in the data, and ❷ event exchange patterns of agents have some

correlation and consequently rollbacks used for event cancellation also reflect this characteristic.

Overall the chart in Figure 21 shows that the rollback characteristics show independence (i.e., they
are randomly distributed) and are amenable to be fitted to classic statistical distributions.

8.1.2 Results from statistical fitting. The results from fitting statistical distributions to all of the

agents experiencing rollbacks is shown in Figure 21. As illustrated by the Standard Error (SE) curves,

the Geometric distribution had the lowest errors for all of the 2,001 agents with rollbacks. The chart

in Figure 21 also shows the probabilities for the Geometric distributions for each of the agents

(in light orange impulses). Although the model with 10,000 agents was evenly partitioned and

each agent had similar behaviors, the rollback distributions are not consistent across the parallel

processes. However, within a process, the geometric probabilities show some consistency, with

fitted probabilities lying within specific ranges. The chart in Figure 22(a) shows a histogram of the

Geometric probability distribution for agents 1565–1865. As illustrated by the chart, the Geometric

probabilities are uniformly distributed with most of the probabilities lying in the range 0.05–0.20.
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Fig. 21. Standard Error (SE) observed from statistical fitting of Poisson ( ), Exponential ( ), and
Geometric ( ) distributions (plotted against Y1-axis) for the agents experiencing rollbacks in the simulation.
Note that agents that do not experience rollbacks are not shown. The gray points show the corresponding
Autocorrelation Function (ACF) values (plotted against Y2-axis). The light orange impulses (❙) show the
Geometric probabilities that were fit to the data (plotted against Y2-axis). Full data and analysis is included
in supplementary materials.

The Standard Error (SE) in each of the fits is in the range 0.0013–0.0458 with an average SEµ =

0.006. This range lies in the middle of the rollback frequencies – i.e., it not too high (as in 8230–8529

LP range) nor is it too low (as in 0–199 or 9800–9999 LP range) and is used for modeling rollbacks.
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Fig. 22. Simulated rollback probabilities and key runtime characteristics from Java benchmarking

8.2 Results from Java benchmarking
The chart in Figure 22(b) shows the runtime of the Java benchmark with 10,000 LPs (100×100)

using exponential distribution with λ = 10 for timestamps. This configuration is the same as the

high-concurrency configuration discussed in Section 7.2.4. The charts show averages and 95%

confidence intervals computed from 10 independent simulation replications for each data point. As

illustrated by the charts in Figure 22(a) and Figure 22(b), the Java benchmark results are consistent

with the trends observed in the actual MUSE simulator. MUSE takes longer to run because the Java

benchmark is a simplified version. Recollect that the queue implementations in both languages are

semantically identical. The consistent performance trends clearly establish that the advantages of

3tHeap are reproducible on multiple platforms and programming languages.

The curves in Figure 22(d) illustrate the impact of increasing the number of virtual partitions in the

Java benchmark. Increasing the number of partitions essentially increases the number of simulated

rollbacks using geometric probabilities uniformly selected from the range 0.0013–0.0458. This chart

highlights the advantages of 2tLadderQ which is able to quickly cancel out pending events. The

ladderQ consumes considerably higher time to complete the same operations. The experimental
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results from the Java implementation are consistent with the sequential and parallel simulation

observations, establishing that the results are reproducible across platforms and programming

languages. In other words, the advantages of 3tHeap and 2tLadderQ are algorithmic and arise

from its design rather than from hardware or compiler optimizations.
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8.2.1 Analysis of runtime constants using linear regression.
The curves in Figure 23 show a linear regression fit of the

observed sequential Java runtimes (see Figure 22(c)) with

respect to the total number of events. The linear regression

fits were very strong with R2 > 0.99 in all three cases. Linear

runtimes for ladderQ and 2tLadderQ with amortized O (1)
runtimes is expected, because runtime = |events | ∗C (where

C is a runtime constant). The linear regression 95% CI shows

a per-event time constant (C) for ladderQ and 2tLadderQ to
be 0.0525µs—0.0639µs and 0.0573µs—0.0589µs respectively.

Interestingly, this range is exactly 10×faster (on Xeon E5520

@ 2.27 GHz) than the values reported by Tang et al (on a

Pentium 4 @ 2.4 GHz, in Figure 5 in [18] for large queues).

The strong (R2 > 0.99) linear regression is an unambiguous indicator of O (1) time complexity

validating our implementations. Furthermore, the 3tHeap also exhibits similar amortized O (1)
trends, but with a much lower per-event access time of 0.0234µs—0.0255µs. Despite an initial

overhead, the overall design of the 3tHeap enables it to also deliver an amortized O (1) time

complexity but with ∼2× faster runtime constant. The lower runtime constant enables the 3tHeap
to deliver conspicuous performance improvements over the ladderQ.

9 CONCLUSIONS
Efficient data structures (i.e., priority queues) for managing pending events play a critical role in

overall performance of both sequential and parallel simulations. In the context of this study, we

broadly classified the queues into single-tiered (heap) or multi-tiered (2tHeap, fibHeap, 3tHeap,
ladderQ, and 2tLadderQ) data structures based on their design. Multi-tier data structures organize

pending events into tiers, with each tier possibly implemented differently. Organizing events into

multiple tiers decouples event management and Logical Process (LP) scheduling permitting the use

of different algorithms and data structures to suit the different needs at each tier.

Our comparative performance analyses used a significantly fine-tuned version of the Ladder

Queue (ladderQ) [18]. The objective of fine-tuning was to reduce the runtime constants of the

ladderQ without impacting its amortized O (1) time complexity. Reduction in runtime constants

is primarily realized by minimizing memory management overheads – i.e., ❶ favor few bulk

operations via std::vector than many small linked list nodes in std::list and❷ recycle memory

or substructures rather than reallocating them. The bulk memory operations do consume additional

memory, but our analysis shows that the performance gains significantly outweigh the extra

memory used. Ergo other simulation kernels can significantly improve overall performance by

replacing linked lists with dynamically growing arrays.

One challenge that arose during the design of experiments was exploring the large multidimen-

sional parameter space in PHOLD and PCS benchmarks. Large parameter spaces may also arise

with actual simulation models. We propose the use of Generalized Sensitivity Analysis (GSA) to

reduce the parameter space. We also suggest the use of Sobol random numbers to enable consistent

exploration of the parameter space. GSA does require many simulations to be run to fully explore

the parameter space. In our case, we ran 6 queues × 2,500 parameter combinations × 6 replications
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= 90,000 total replications. However, GSA was able to significantly narrow the parameter space, i.e.,
from 9 down to 2, in a scientific manner. GSA data shows that concurrency-per-LP indicated by

eventsPerLP parameter (i.e., a batch of events scheduled per LP), plays the most dominant role to

explain performance differences between the data structures. Similar GSA analysis can be applied

to other models and benchmarks enabling consistent and focused analyses.

The sequential and parallel simulation results showed that 2tLadderQ performs no worse than

our fine-tuned ladderQ in sequential simulations (with t2k=1). Furthermore, our 2tLadderQ out-
performs our ladderQ in parallel simulations because of its design that enables rapid cancellation

of events during rollbacks. In fact, the ladderQ required aggressive throttling of optimism without

which ladderQ was impractical to use in scenarios with many cascading rollbacks. The results

strongly favor the general use of 2tLadderQ over the ladderQ.
The experiments show that the runtime constants play an important role – for example, the

Fibonacci heap with its O (1) time complexity for many operations still did not perform well in our

benchmarks. The 3tHeap has much lower runtime constants enabling it to outperform other data

structures in many cases. The advantages of 3tHeap are realized in simulations that have higher

concurrency (i.e., larger batches of events) per LP. Such a scenario was common in PCS model that

yielded a conspicuous 62× speedup. Figure 24 summarizes the effective regions observed for the 3

queues. The advantages of 3tHeap is clearly realized when each LP has 7 or more concurrent events

at each time step. With fewer concurrent events, its performance is comparable or lower than

2tLadderQ. The performance of 2tLadderQ and ladderQ are comparable as long as the hashing

function used to determine sub-buckets for 2tLadderQ is very lightweight. In this study we used a

modulo operator (i.e., sub-bucket = receiver_id % t2k) as the hash. However, we recommend a

faster hash using bit-wise operators (i.e., sub-bucket = receiver_id & t2k) by restricting t2k to be

an integral power of 2 (i.e., t2k = 2
n
).
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The experiments conducted on two different compute

cluster using three different model and a broad range

of parameter settings establishes that the performance

trends are consistently reproducible. Moreover, imple-

mentations in both C++ and Java also show similar per-

formance characteristics. The multi-platform and multi-

programming-language analyses unambiguously estab-

lish that the advantages of 3tHeap and 2tLadderQ are

algorithmic and stem from its design rather than from

hardware, programming-language, or compiler optimizations.

The multi-tier data structures enjoy lower runtime constants for event cancellation operations

which play an influential role in Time Warp synchronized parallel simulations. Therefore, the

multi-tier data structures perform consistently better in optimistic parallel simulations. Moreover,

when compared to ladderQ and 2tLadderQ, the 3tHeap has a much more straightforward design

without any hyperparameters such as rung counts, thresholds etc. This significantly simplifies

implementation and analysis of 3tHeap. In overall summary, our analysis strongly favor broad use of

our multi-tier queues, specifically 2tLadderQ and 3tHeap, replacing all existing DES data structures.
The 2tLadderQ and 3tHeap are consistently effective in sequential and parallel simulations, with

sequential results also bearing potential application to conservative and multithreaded simulations.
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